• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Queen’s University Belfast researcher turning dirty tinfoil into biofuel catalyst

Bioengineer by Bioengineer
July 26, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Queen's University Belfast

A researcher at Queen's University Belfast has discovered a way to convert dirty aluminium foil into a biofuel catalyst, which could help to solve global waste and energy problems.

In the UK, around 20,000 tonnes of aluminium foil packaging is wasted each year – enough to stretch to the moon and back. Most of this is landfilled or incinerated as it's usually contaminated by grease and oils, which can damage recycling equipment.

However, Ahmed Osman, an Early Career Researcher from Queen's University's School of Chemistry and Chemical Engineering, has worked with engineers at the university to create an innovative crystallisation method, which obtains 100% pure single crystals of aluminium salts from the contaminated foil. This is the starting material for the preparation of alumina catalyst.

Usually, to produce this type of alumina it would have to come from bauxite ore, which is mined in countries such as West Africa, the West Indies and Australia, causing huge environmental damage.

Osman, who took on the project under the University's Sustainable Energy, Pioneering Research Programme, has created a solution which is much more environmentally-friendly, effective and cheaper than the commercial catalyst which is currently available on the market for the production of dimethyl ether – a biofuel which is regarded as the most promising of the 21st century. Osman says making the catalyst from aluminium foil cost about £120/kg while the commercial alumina catalyst comes in at around £305/kg.

Its unique thermal, chemical and mechanical stability means it can also be used as an absorbent, in electronic device fabrication, as a cutting tool material or as an alternative for surgical material for implants.

The ground-breaking research has been published in Scientific Reports.

Osman commented: "I have always been inspired by Chemistry and I believe that catalysis especially can make the world a better place. One day I took a walk through our laboratories at Queen's and found lots of Aluminium foil waste so I did a little digging and after speaking to my colleagues, I ran my experiment and was astonished by the ultrapure single crystals – I didn't expect it to be 100% pure.

"At Queen's, our scientists and engineers often work hand in hand on common challenging problems for the society. By using our joint expertise, we have been able to tackle the issue of sustainable development and come up with a research solution which lies in an area between chemistry and chemical engineering.

"This breakthrough is significant as not only is the alumina more pure than its commercial counterpart, it could also reduce the amount of aluminium foil going to landfill while also sidestepping the environmental damage associated with mining bauxite."

Osman is hoping to continue his research into how these catalysts can be further improved and explore the opportunities for commercialisation of biofuel production or use the modified alumina catalyst in the catalytic converters in natural gas vehicles.

###

Media Contact

Emma Gallagher
[email protected]
289-097-5384
@QueensUBelfast

http://www.qub.ac.uk

Original Source

http://www.qub.ac.uk/Connect/News/Allnews/Queensresearcherturningdirtytinfoilintobiofuelcatalyst.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Breakthrough Theory Unveils New Insights into Molecular Evolution

Breakthrough Theory Unveils New Insights into Molecular Evolution

November 14, 2025
Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

November 14, 2025

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Power Network Communication with Graph Reinforcement Learning

Oral Frailty, Cognition, Nutrition, and Inflammation in Seniors

Optimizing Surface Density of States in Topological Systems

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.