• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bad bugs beware-bacterial membrane simulations earn researcher Bessel Award

Bioengineer by Bioengineer
July 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Alexander von Humboldt Foundation

Bacteria has a formidable enemy in Wonpil Im.

As researchers race against bacteria's growing resistance to antibiotics, Im is fighting back by accelerating knowledge about how antibiotics permeate bacterial membranes and target it for destruction. His weapon: computational biophysics.

Im, Presidential Endowed Chair in Health and Professor of Biological Sciences and Bioengineering at Lehigh University, is a pioneer in the development of new computer-aided biophysics methods. Biophysics aims to examine the processes in biological systems using the laws of physics and its measurement methods. He has been integral to the development of CHARMM-GUI an open-source tool that enables researchers throughout the world to generate simulations of complex biomolecular systems more simply and more precisely than previously possible. The National Science Foundation's Advances in Bio Informatics program is providing funding support for the maintenance and expansion of the web-based interface.

On June 29, 2017, Im was awarded a prestigious Friedrich Wilhelm Bessel Research Award by the Humboldt Foundation to support his antibiotic research with two collaborators from Jacobs University in Bremen, Germany: Dr. Ulrich Kleinekathöfer, Professor in Theoretical Physics, and biophysicist Prof. Dr. Mathias Winterhalter. The project will use computational biophysics to model bacterial membrane channels and the transport of molecules, in particular antibiotic molecules, by proteins. Im will use a specialized CHARMM-GUI module to build a simulation of Gram-negative bacteria's complex outer membrane.

"With the foundation awarding only 20 Bessel Research Awards each year, the award is evidence of Wonpil's accomplishments in the field and his international colleagues' eagerness to work with him," said Alan J. Snyder, Lehigh's vice president and associate provost for research and graduate studies.

Gram-negative bacteria are more resistant to antibiotics than Gram-positive bacteria because of their impenetrable cell wall made up of both an inner and outer membrane. Diseases caused by Gram-negative bacteria include cholera, typhoid, meningitis and various kinds of gastrointestinal distresses, including Escherichia coli, also known as E. coli.

"The work we are doing is aligned with one of the top drug development priorities identified by the European Commission's 'New Drugs for Bad Bugs' initiative: translocation, which focuses on understanding the molecular basis of bacterial cell wall permeability. Of particular concern is how antibiotic substances are transported across bacterial cell walls into the pathogens with the help of highly specialized transport proteins," says Im. "We don't really know the mechanics of how molecules penetrate the outer bacterial membrane. By understanding this process thoroughly, researchers could more easily predict what kinds of molecular structures could target specific bacterial proteins and kill the cell."

Im's group recently figured out how to use lipopolysaccharide, a simple phospholipid, to mimic the outer membrane of E. coli. It was the first major step for his lab to simulate a Gram-negative pathogen for drug discovery. Im's CHARMM-GUI can model lipopolysaccharide structures' various bacteria in less than 10 minutes.

Im's ultimate goal is to model complex biomolecular systems that will further scientific understanding of the structure and functions of 10 different superbugs. CHARMM-GUI is designed to advance such understanding.

"I hope that widespread access to this free graphical user interface will enable researchers worldwide to model any number of bacterial cells efficiently, pushing the boundaries of our modeling capabilities and leading to a greater understanding of how these complex systems actually work."

###

Media Contact

Lori Friedman
[email protected]
610-758-3224
@lehighu

http://www.lehigh.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.