• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel class of antibiotics shows promise against plague, drug-resistant bacteria

Bioengineer by Bioengineer
July 25, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Washington, DC – July 25, 2017 – Pathogenic bacteria are rapidly developing resistance to the arsenal of microbial therapies — and driving researchers to identify families of therapeutics with new modes of action. Recently, those include antibiotics that inhibit LpxC, an enzyme critical to forming the outer membrane of Gram-negative bacteria. This week in mBio, an international group of scientists report on laboratory experiments suggesting that a novel LpxC inhibitor can treat multi-drug resistant bacterial infections, including many that originate in hospitals.

The new drug, LPC-069, also proved an effective treatment, in mice, for infection by Yersinia pestis, the Gram-negative bacteria that causes bubonic plague. The disease is fatal if not treated and diagnosed in over 1,000 people annually.

LpxC inhibitors represent a new class of antibiotics that might treat a raft of infectious diseases caused by Gram-negative microbes. Biologists first suggested targeting LpxC as a treatment strategy more than 20 years ago, but researchers were unable to identify a compound that was safe at effective dosage levels, says biochemist and structural biologist Pei Zhou at Duke University in Durham, North Carolina. [image: scanning electron microscopic (SEM) image of yellow-colored Yersinia pestis bacteria gathered on the proventricular spines of a Xenopsylla cheopis flea, credit: NIAID]

"Our study shows that LpxC is a viable target, and we can dose the compound (LPC-069) at very high levels without noticeable toxicity," says Zhou, who co-led the study with biologist Florent Sebbane, a researcher at the French National Institute of Health and Medical Research (Inserm) who works at the Pasteur Institute of Lille, France. Development of the drug was led by Pei Zhou and chemist Eric Toone, also at Duke University.

Zhou, Toone, and Sebbane reported on another LpxC inhibitor, called LPC-058, in the current and previous studies, that demonstrated antibiotic activity in vitro. LPC-058 also delayed plague infections in mice; however, the compound led to side effects including diarrhea, the accumulation of white blood cells in the lungs and intestines, and, at the highest doses, liver toxicity.

LPC-069, on the other hand, caused no serious side effects at any of the tested doses, including the highest dose, the researchers reported. In vivo studies of the compound showed antibiotic activity against more than a dozen pathogenic bacterial taxa, including multi-drug resistant clinical strains. Except for the plague-causing Y. pestis, all the bacteria were cultured from patients at the Lille University Hospital in Lille, France.

To test the efficacy of the compound against plague, the researchers injected 15 mice with Y. pestis. Animals in the control group received no treatment. Eighteen hours after infection, mice in the experimental group received treatment with high-dosage LPC-069. Five days later, the untreated mice were dead, and mice treated with LPC-069 survived. Autopsies conducted two weeks after treatment showed no signs of Y. pestis organ colonization in the experimental group, suggesting a successful cure of infection.

LpxC is one of the six essential enzymes in the lipid A (Raetz) pathway in Gram-negative bacteria, and Zhou suspects that others essential lipid A enzymes might be valuable targets for antibiotic treatment as well.

Sebbane says researchers need to test the drug's efficacy against drug-resistant infections in animals. The researchers are also exploring the drug's effectiveness against the full range of Gram-negative infections, including strains that are resistant to commercially-available antibiotics.

###

The American Society for Microbiology is the largest single life science society, composed of over 50,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

Media Contact

Aleea Khan
[email protected]
202-942-9365
@ASMnewsroom

http://www.asm.org

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025
blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.