• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research targets long-term brain deficits in cardiac arrest survivors

Bioengineer by Bioengineer
July 24, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New Orleans, LA – Research conducted by Jason Middleton, PhD, Assistant Professor of Cell Biology and Anatomy, and Neuroscience at LSU Health New Orleans School of Medicine, and colleagues may lead to a treatment to prevent long-term sensory problems by restoring normal brain function in survivors of cardiac arrest. The study, done in a rodent model and using modeling data, is published online in eNeuro, an open-access journal of the Society for Neuroscience, and is available here.

Cardiac arrest is a common cause of brain injury. When the brain is deprived of oxygen, not only can cells die, but surviving cells can suffer damage resulting in long-term sensory dysfuntion in the cortex. The cerebral cortex is the outer covering of the brain — the gray matter that covers hemispheres of the brain like a helmet. This is the part of the brain that receives sensory input, such as vision, hearing and touch, and areas of the cortex are also involved in more complex functions, such as memory, language, creativity, judgement and emotion.

The research team studied the long-term impact of cardiac arrest on the cortex in a rat model. They measured sensory response and found that after oxygen deprivation, the sensory circuits in the cortex are less responsive with behavioral deficits. Their data suggest that cardiac arrest and resuscitation permanently affect cortical circuit function in survivors.

"Our work characterizes the changes that occur in the sensory cortex after a form of global hypoxic injury in juvenile rats," notes Dr. Middleton. "The injury did not result in widespread cell death as occurs in other forms of acute, focal ischemic injury; the deficits uncovered were subtler and reflected decreased ability of the cortex to discriminate sensory stimuli. We used computer modeling of the neural network to implicate changes in the balance of excitatory and inhibitory synaptic transmission in the cortex."

According to the American Heart Association, more than 350,000 Americans experienced out-of-hospital cardiac arrest last year. With bystander CPR, 46.1% survived.

"These findings lay the groundwork for further studies to pinpoint therapeutic targets to restore excitatory/inhibitory balance in the injured brain and mitigate sensory deficits later in life," concludes Middleton.

###

The research team also included Drs. Daniel J. Simons, Robert S. B. Clark and Patrick M. Kochanek from the University of Pittsburgh School of Medicine and Drs. Jennifer W. Simmons and Michael Shoykhet from Washington University School of Medicine in St. Louis.

The research was supported by NIH Grants K08 NS-082362, 75 NS19950, HD045968, the Pediatric Critical Care Scientist Development Program (5K12-HD04739-8, University of Utah), Children's Discovery Institute of the St. Louis Children's Hospital, McDonnell Center for Systems Neuroscience and Child Health Research Center of Excellence in Developmental Biology at Washington University School of Medicine (K12-HD01487).

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's health sciences university leader, LSU Health New Orleans includes a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, and Schools of Allied Health Professions, Nursing, and Graduate Studies. LSUHSC faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSUHSC research enterprise generates jobs and enormous economic impact. LSUHSC faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu, http://www.twitter.com/LSUHealthNO or http://www.facebook.com/LSUHSC.

Media Contact

Leslie Capo
[email protected]
504-568-4806
@LSUHealthNO

http://www.lsuhsc.edu/

http://lsuh.sc/nr?a=20

Related Journal Article

http://dx.doi.org/10.1523/ENEURO.0319-16.2017

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.