• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Immune cells the missing ingredient in new bladder cancer treatment

Bioengineer by Bioengineer
July 24, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

The study finds that checkpoint immunotherapy, which is designed to activate the immune system, is not effective on some bladder cancers because there are no immune cells in the tumours. The finding explains what is happening at a cellular level to prevent the immune cells from getting into the tumour and points scientists in the right direction towards developing a combination therapy that could work.

"It's been a mystery for decades as to how tumours escape the immune system," said Mads Daugaard, an assistant professor of urologic science at UBC and a senior scientist at the Vancouver Prostate Centre and Vancouver Coastal Health Research Institute (VCHRI). "We've identified a cellular signaling pathway that regulates whether the body's immune cells are allowed to infiltrate the tumour."

Bladder cancer is the fifth most common cancer in Canada. There is only one line of chemotherapy available, cisplatin-based therapy, for invasive tumours. Once cancers become resistant, only checkpoint immunotherapy is approved as second-line treatment.

Atezolizumab is a checkpoint immunotherapy drug that strengthens the body's immune response and recently became the first new bladder cancer drug to be approved in more than twenty years. Initial results were very promising but subsequent clinical trials have shown that only one in five patients showed an objective response to treatment. The reason for that has puzzled researchers, until now.

In this study, Daugaard and his colleagues, Dr. Peter Black, an associate professor in urologic sciences at UBC and a senior scientist at the Vancouver Prostate Centre and VCHRI, and a team of scientists from H3 Biomedicine headed by Ping Zhu, found that some invasive bladder cancer tumours block the immune cells from accessing it by activating a cell signaling pathway called the peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway.

"With this pathway, the tumours close the door to the immune system," said Daugaard. "Without immune cells in the tumour, checkpoint immunotherapy has little effect. Now we know what door the tumours are closing and we can therefore focus our efforts on breaking down that door and let the immune system back in."

Daugaard and his team have taken the first steps to develop a drug able to target the PPAR-γ pathway. The rationale is to use such a drug in combination with checkpoint immunotherapy treatment.

"The most efficient way to combat a cancer would be to have the immune system take care of it itself. This is ultimately what we want to achieve," he said.

This research was published today in Nature Communications: http://www.nature.com/ncomms

###

Media Contact

Heather Amos
[email protected]
604-828-3867
@UBCnews

http://www.ubc.ca

http://dx.doi.org/10.1038/s41467-017-00147-w

Share12Tweet7Share2ShareShareShare1

Related Posts

Uncovering a Crucial Cellular Mechanism Behind Breast Cancer Relapse

November 6, 2025

Scientists Reprogram Human Stomach Cells to Produce Insulin, Pioneering New Diabetes Therapy

November 6, 2025

Affordable Coal and Waste Plastics Transformed into High-Value Carbon Fibers

November 6, 2025

Unlocking FLS2’s Secrets for Broader Pathogen Detection

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering a Crucial Cellular Mechanism Behind Breast Cancer Relapse

Scientists Reprogram Human Stomach Cells to Produce Insulin, Pioneering New Diabetes Therapy

Affordable Coal and Waste Plastics Transformed into High-Value Carbon Fibers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.