• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Despite a great grip, geckos sometimes slip

Bioengineer by Bioengineer
July 19, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Geckos climb vertically up trees, walls and even windows, thanks to pads on the digits of their feet that employ a huge number of tiny bristles and hooks.

Scientists have long marveled at the gecko's adhesive capabilities, which have been described as 100 times more than what is needed to support their body weight or run quickly up a surface.

But a new theoretical study examines for the first time the limits of geckos' gripping ability in natural contexts. The study, recently published in the Journal of the Royal Society Interface, reports there are circumstances – such as when geckos fear for their lives, leap into the air and are forced to grab on to a leaf below – when they need every bit of that fabled adhesive ability, and sometimes it's not enough.

"Geckos are notoriously described as having incredible ability to adhere to a surface," said Karl Niklas, professor of plant evolution at Cornell University and a co-author of the paper. The study's lead authors, Timothy Higham at the University of California, Riverside, and Anthony Russell at the University of Calgary, Canada, both zoologists, brought Niklas into the project for his expertise on plant biomechanics.

"The paper shows that [adhesive capability] might be exaggerated, because geckos experience falls and a necessity to grip a surface like a leaf that requires a much more tenacious adhesion force; the paper shows that in some cases the adhesive ability can be exceeded," Niklas said.

In the theoretical study, the researchers developed computer models to understand if there are common-place instances when the geckos' ability to hold on to surfaces might be challenged, such as when canopy-dwelling geckos are being chased by a predator and are forced to leap from a tree, hoping to land on a leaf below. The researchers incorporated ecological observations, adhesive force measurements, and body size and shape measurements of museum specimens to conduct simulations. They also considered the biomechanics of the leaves, the size of the leaves and the angles on the surface that geckos might land on to determine impact forces. Calculations were also based on worst-case scenarios, where a gecko reaches a maximum speed when it is no longer accelerating, called "terminal settling velocity."

"Leaves are cantilevered like diving boards and they go through harmonic motion [when struck], so you have to calculate the initial deflection and orientation, and then consider how does that leaf rebound and can the gecko still stay attached," Niklas said.

The final result showed that in some cases geckos don't have enough adhesion to save themselves, he added.

Higham and Russell are planning to travel to French Guiana to do empirical adhesive force studies on living geckos in native forests.

The basic research helps people better understand how geckos stick to surfaces, and has the potential for future applications that mimic such biological mechanisms.

###

The study was funded by the National Science Foundation.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Media Contact

Joe Schwartz
[email protected]
607-254-6235
@cornell

http://pressoffice.cornell.edu

http://blogs.cornell.edu/mediarelations/2017/07/19/despite-a-great-grip-geckos-sometimes-slip/

Related Journal Article

http://dx.doi.org/10.1098/rsif.2017.0156

Share12Tweet7Share2ShareShareShare1

Related Posts

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

September 3, 2025

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

September 3, 2025

Dad’s Childhood Exposure to Passive Smoking May Impact Kids’ Lung Health for Life

September 3, 2025

Diabetes Therapy Quality of Life Tied to Mortality

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.