• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New way found to boost immunity in fight cancer and infections

Bioengineer by Bioengineer
July 19, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international research team led by Université de Montréal medical professor Christopher Rudd, director of research in immunology and cell therapy at Maisonneuve-Rosemont Hospital Research Centre, has identified a key new mechanism that regulates the ability of T-cells of the immune system to react against foreign antigens and cancer. T-cells orchestrate the response of the immune system. This work outlines how a receptor termed LFA-1 on the surface of T-cells mediates adhesion to other cells such as cancer cells.

The work, published in Nature Communications, shows that LFA-1 mediates adhesion or de-adhesion by engaging a novel intracellular pathway in T-cells. International work over the past decade has underscored the importance of the manipulation of the immune system to combat cancers and infections. Manipulation of the new pathway outlined by Rudd and his co-researchers represents a new targeting strategy to promote immune-cell rejection of cancer.

"With this work," said Rudd, "we have found a new way to alter the overall immune response. We now have new tools to increase immune response against cancer and infections. The discovery could prove to be a major asset in the fight against several pathologies via the targeting of a single immune cell component."

"It is clear that Dr. Rudd's discovery represents a breakthrough in our ability to understand the immune system and to use it in the fight against cancer and infections," added Denis-Claude Roy, director of research at Maisonneuve-Rosemont Hospital. "This new mechanism allows us to identify the weaknesses of our present immunological approaches and to develop new weapons that are even more effective."

###

An international study

This research brought together the expertise of the Maisonneuve-Rosemont Hospital Research Centre and the University of Cambridge. The lead author is Dr. Monika Raab of the University of Cambridge and J.W. Goethe University). The work was supported by grants from the Wellcome Trust (London) and the CR-HMR Foundation (Montreal).

About Dr. Christopher Rudd

Recently recruited to the Maisonneuve-Rosemont Hospital Research Centre, Christopher Rudd specializes in signaling mechanisms that control the immune function of T lymphocytes. He brings impressive international expertise to the CIUSSS-EMTL research team. He was previously a professor at the University of Cambridge and Harvard University.

About this study

Monika Raab, Yuning Lu, Karsten Kohler, Xin Smith, Klaus Strebhardt & Christopher E. Rudd, "LFA-1 activates focal adhesion kinases FAK1 / PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation", Nature Communications, 2017 July 12.DOI: 10.1038 / ncomms16001

Media Contact

Julie Gazaille
[email protected]
514-343-6796
@uMontreal_news

http://bit.ly/mNqklw

Share16Tweet8Share2ShareShareShare2

Related Posts

Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025
Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.