• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Revealing particle separation

Bioengineer by Bioengineer
July 18, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Traces of biomolecules such as DNA can be detected with a new "dynamic" technique based on the observation of association and dissociation events of gold nanoparticles. If the desired DNA sequence is present, it can reversibly bind two nanoparticles together. This can be detected in real time through a change in light scattering. As reported in the journal Angewandte Chemie, this method differentiates true signals from noise and can detect deviations of individual bases.

Detecting and quantifying biomolecules at extremely small concentrations is increasingly important for applications such as early and precise diagnosis, monitoring cancer treatment, forensic investigations, and highly sensitive tests for biological weapons. The current method of choice is the polymerase chain reaction (PCR), which is based on the enzymatic replication of DNA. The disadvantage of this method is the false positives that may result from the tiniest amounts of impurity.

Scientists working with Jwa-Min Nam at Seoul National University (South Korea) have now developed a new method for detecting extremely small amounts of DNA–without replication, signal amplification, or false positive results. Their method is based on the detection of individual binding events. Because the binding partners continuously separate and then bind again, the number of detectable results is multiplied and unspecific signals are minimized. This associating and dissociating nanodimer analysis (ADNA) is based on the measurement of light scattering by gold nanoparticles using dark-field microscopy.

The sample and two types of gold nanoparticles are placed onto a glass slide coated in a lipid double layer. One type of nanoparticle has binding sites on the surface that anchor to the lipid layer. The other type reversibly binds to the lipid layer, remaining mobile. Both nanoparticles have short single-stranded DNA segments that are complementary to two different sequences in the target DNA so that they can bind it. When a mobile nanoparticle comes very close to an immobilized one, the target DNA can bind them into a dimer.

When two nanoparticles are bound, their vibrations (plasmons) are coupled. This changes the intensity and color of scattered light, which can be detected in real time. The dynamic analysis of dimers that dissociated during observation is the key to the clear differentiation between the presence and absence of the target DNA. The kinetics of the dissociation are significantly different for DNA that is a perfect match and DNA with a single altered base.

Even in the presence of other DNA, such as in a sample of human blood serum, it was possible to selectively detect and reliably quantify ultra-low concentrations of the target DNA. Under the test conditions used, the detection limit was about 46 DNA copies.

###

About the Author

Dr. Jwa-Min Nam is currently a Full Professor in Chemistry and the Director of the Center for Innovative Nanobiomedical Technology at Seoul National University. His research interests include nanoplasmonics, plasmonic bioprobes, and cell-nanostructure interfaces. He has received numerous international awards and was elected as a member of the Young Korean Academy of Science and Technology and the Global Young Academy.

http://www.thenamlab.org/

Media Contact

Mario Mueller
[email protected]

http://newsroom.wiley.com/

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/homepage/press/201729press.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201705330

Share14Tweet8Share2ShareShareShare2

Related Posts

Navigating Osteoporotic Vertebral Fractures: Insights from Patients and Professionals

January 17, 2026

Evaluating 3D Printed Acetaminophen Suppositories: Quality & Pharmacokinetics

January 17, 2026

Kefir Probiotics Improve Autism Symptoms in Children

January 17, 2026

Exploring Caregiver Support in Knee Surgery Recovery

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    77 shares
    Share 31 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Osteoporotic Vertebral Fractures: Insights from Patients and Professionals

Genomic Insights into Iranian Very Early Onset IBD

Evaluating 3D Printed Acetaminophen Suppositories: Quality & Pharmacokinetics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.