• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA tracking tool tips the scales for distinguishing invasive fish

Bioengineer by Bioengineer
July 17, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Rather than conduct an aquatic roll call with nets to know which fish reside in a particular body of water, scientists can now use DNA fragments suspended in water to catalog invasive or native species.

"We've sharpened the environmental DNA (eDNA) tool, so that if a river or a lake has threatened, endangered or invasive species, we can ascertain genetic detail of the species there," said senior author David Lodge, the Francis J. DiSalvo Director of the Atkinson Center for a Sustainable Future at Cornell University, and professor of ecology and evolutionary biology. "Using eDNA, scientists can better design management options for eradicating invasive species, or saving and restoring endangered species."

Additionally, by sampling DNA fragments in water and using polymerase chain reaction (PCR) technology, which acts like a genetic copying machine to make billions of copies of the DNA for study, scientists can collect fish habitat data without the need to capture fish.

Research begins with a small water sample from a stream, lake or river. "Fish have millions of cells, and when they swim they leave a trail of cells behind. So, we're using the whole mitochondrial genome of these cells to track fish," said Kristy Deiner, a Cornell postdoctoral researcher and a co-lead author on the paper.

Biologists have commonly assumed that fish DNA extracted from water bodies is of poor quality and highly degraded. As it turns out, the new study is the first to show the opposite is true. In a stream, for example, large strands of fish DNA remain intact.

"We're getting closer to what forensic scientists do at a crime scene every day. They're not interested in whether any humans were at a crime scene, they're interested in knowing which humans were at the crime scene," said Lodge.

As an example, Lodge said, Asian carp have long been an invasive species in Chicago's canal system. "All we could say was 'Yes, there are Asian carp here,'" he said. "With this technological breakthrough, we are getting closer to learning how many there are – based on the genetic differences between individuals – and potentially even where they came from. Then, researchers can gauge the situational danger and ask, 'Can we close off the source of these invasive fish?'"

On using this technology, Deiner said, "If we catch an invasion early enough, for example, it's possible to eradicate the population and prevent the invasion from continuing."

###

The research, "Long-Range PCR Allows Sequencing of Mitochondrial Genomes from Environmental DNA," from Cornell, the University of Notre Dame and Hawaii Pacific University published July 14 in Methods in Ecology and Evolution.

Other authors on the paper, are co-lead author Mark A. Renshaw and Brett Olds of Hawaii Pacific University; and Yiyuan Li and Michael E. Pfrender of Notre Dame. The research was supported by the U.S. Department of Defense's Strategic Environmental Research and Development Program.

For more information:
Lindsey Hadlock
office: 607-255-6121
cell: 607-269-6911
[email protected]

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

Media Contact

Lindsey Hadlock
[email protected]
607-255-6121
@cornell

http://pressoffice.cornell.edu

http://blogs.cornell.edu/mediarelations/2017/07/14/dna-tracking-tool-tips-the-scales-for-distinguishing-invasive-fish/

Related Journal Article

http://dx.doi.org/10.1111/2041-210X.12836

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.