• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New device detects tumor cells in blood

Bioengineer by Bioengineer
July 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © URV

Researchers at the URV's Department of Physical and Inorganic Chemistry, led by the ICREA researcher, Ramon Álvarez Puebla, and the professor of Applied Physics, Francesc Díaz, and the Department of Clinical Oncology of the HM Torrelodones University Hospital, have patented a portable device that can detect tumour cells in blood.

The device counts the number of tumour cells in a blood sample in real time and is thus a highly effective tool for improving the monitoring, treatment and diagnosis of cancer.

The system has been successfully tested on patients in various stages of breast cancer and could be used to determine the presence of other tumours by analysing different antibodies in the blood sample.

Patients with cancer, particularly if it has metastasised, need to be constantly monitored during treatment to assess the progress of the disease. This is currently done using imaging techniques and biopsies which are invasive and not always possible. In contrast, the device designed by the URV researchers is highly sensitive and requires no surgery or treatment involving radiation. It is thus a highly useful clinical method because it improves patient quality of life by removing the need for the more invasive traditional procedures.

The device will be a useful tool for accurately determining a patient's level of health because it can monitor cancer quickly, cheaply, effectively and non-invasively. Furthermore, it can assist in the early diagnosis of the disease and monitor tumours more effectively and in a manner that has a less negative effect on patients' bodies.

Two integrated systems

The new device uses two systems in miniature: a flow system and an optical system. The first causes the blood cells to flow in alignment, while the second uses two optic fibres (a laser diode and a photodetector) to analyse the cells and count those which are cancerous and those which are not. The ratio between the two gives an understanding as to how the cancer is progressing.

The device in operation: a fibre optic shines a blue light on the sample, highlighting the cells as they flow from left to right.

This complex system is the result of research published in the Nature group's Scientific Reports and is part of the doctoral thesis by Eric Pedrol, supervised by Jaume Masons and Francesc Díaz, in collaboration with the Department of Clinical Oncology of the HM Torrelodones University Hospital, led by the researcher Eduardo García-Rico.

The device has been jointly patented by the URV, the ICREA, the CTQC, Medcom Advance and Medcom Tech. It has been licenced for commercialisation to Medcom Science, a company engaged in the research and development of technologies for diagnosing and treating cancer. At the URV, the technology and the licence to Medcom Science have been protected by the URV's Research Exploitation Unit.

###

Reference: E. Pedrol, M. Garcia-Algar, J. Massons, M. Nazarenus, L. Guerrini, J. Martínez, A. Rodenas, A. Fernandez-Carrascal, M. Aguiló, L.G. Estevez, I. Calvo, A. Olano-Daza, E. Garcia-Rico, F. Díaz, R.A. Alvarez-Puebla: "Optofluidic device for the quantification of circulating tumor cells in breast cancer". Scientific Reports (2017) 7, 3677 (DOI: 10.1038/s41598-017-04033-9)

Media Contact

Francesc Díaz
[email protected]
34-977-559-517
@universitatURV

http://www.urv.cat

Original Source

http://diaridigital.urv.cat/en/researchers-develop-a-device-that-detects-tumour-cells-in-blood/ http://dx.doi.org/10.1038/s41598-017-04033-9

Share12Tweet8Share2ShareShareShare2

Related Posts

Citizen Science Reveals Denmark’s Tardigrade Diversity

September 2, 2025
Transforming Secondary Aluminum Ash into Efficient Phase Change Materials

Transforming Secondary Aluminum Ash into Efficient Phase Change Materials

September 2, 2025

Protein Lipoylation: Key to Cancer Metabolic Therapy

September 2, 2025

Optimizing Personalized Learning Paths with Advanced Neural Networks

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Citizen Science Reveals Denmark’s Tardigrade Diversity

Transforming Secondary Aluminum Ash into Efficient Phase Change Materials

Protein Lipoylation: Key to Cancer Metabolic Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.