• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New test paves way for potential treatments to target Alzheimer’s and other conditions

Bioengineer by Bioengineer
July 17, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A simple methodology for capturing proteins implicated in the development of Alzheimer's disease and other conditions has been developed by researchers at the University of Bradford and University of Dundee.

The new methodology involves easily trapping proteins that bear a specific modification that can provide potential markers for conditions. The specific modification is based on sugar and when attached to a protein affects how the protein functions. Protein modification is a normal, carefully regulated cellular function, but in some instances this can go wrong.

Alzheimer's, along with other conditions including cancers, type 2 diabetes, and cardio-vascular disease, is affected by dysregulation (abnormal or imperfect regulation) of these sugar modifications to proteins. Identifying such proteins is a key step in understanding their involvement in these various conditions.

The newly developed methodology could open the way for treatments that target these protein alterations, and ultimately the condition.

Previously, capturing these proteins has been very difficult as the sugar modification was prone to falling off the protein. In order to capture them, researcher's required highly specialised laboratory equipment and extensive validation of identified proteins. This new method is simple and can be carried out by any laboratory, opening the way to rapid identification of proteins involved in the development of a number of diseases.

It also opens up the possibilities for therapies to be developed to target specific proteins identified as being aberrantly modified in these disease processes.

The methodology involves growing a protein with an engineered tail that grabs the sugar-modified protein only. This can then be added to complex protein mixtures obtained from tissue. The modified tail is then used as a handle to pull out all proteins that bear the sugar modification and so separate those proteins that have the modification from those that do not. These proteins can then be identified using several different routine laboratory techniques.

Dr Ritchie Williamson of the University of Bradford said: "This methodology represents a major step forward. We are now in a position where we can easily trap the proteins we need to target. If we can do this we can then identify the proteins which we think may be involved in the disease process. We also have the potential to find biomarkers, especially in younger people, and to probe different diseases."

###

The paper is published in Nature.

Lead author is Professor Daan M F van Aalten (University of Dundee). First authors are Dr Ritchie Williamson (University of Bradford), Dr Nithya Selvan and Dr Daniel Mariappa (University of Dundee).

Media Contact

Mark Thompson
[email protected]
44-127-523-6510
@BradfordUni

http://www.bradford.ac.uk

http://www.bradford.ac.uk/news/2017/alzheimer-protein-test.php

Related Journal Article

http://dx.doi.org/10.1038/nchembio.2404

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Sex Differences in Brain mRNA and Pair Bonding

October 21, 2025
blank

When Cells Ignore the Signal: Why Old Models of Cell Division Fall Short

October 21, 2025

Glutamate Deficit Affects Mouse Reproduction, Metabolism Sex-Specifically

October 21, 2025

Gender Variations in Pain Response to Cold Stress

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    129 shares
    Share 52 Tweet 32

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in Brain mRNA and Pair Bonding

Safe Epigenetic Reprogramming Enables Simultaneous Multi-Gene Editing in T Cells for Enhanced CAR-T Therapies

Linking Parent Emotion Awareness to Autistic Kids’ Kindness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.