• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study of brain circuits finds key links to symptoms of depression

Bioengineer by Bioengineer
July 17, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of California San Diego scientists have linked specific wiring in the brain to distinct behavioral symptoms of depression.

In a study published in the journal Cell, researchers in UC San Diego's Division of Biological Sciences found brain circuits tied to feelings of despair and helplessness and were able to alleviate and even reverse such symptoms in mice studies.

"We took an approach of studying depression in the sense that different brain areas and circuits of the brain might mediate or contribute to very discrete aspects of depression," said study first-author Daniel Knowland, a UC San Diego graduate student. "For example, brain area A might contribute to loss of appetite, brain area B to social withdrawal and so forth."

Senior author Byungkook Lim, an assistant professor in the Neurobiology Section, said the results require much more study and evaluation to be applied to humans with depression, but the new research in animal models provides solid grounding.

"This is one of the first studies providing clear evidence showing that different brain circuitry is involved in different types of depressive behavior with specific symptoms," said Lim. "Each area of the brain is different with distinct cell types and connectivity, so if we can confirm that one area of circuitry is more involved in a particular symptom than another, we may eventually be able to treat a depression patient more efficiently than treating everyone the same way."

The researchers employed several tools to track brain pathways and specific areas of neurons involved in specific behaviors, including imaging techniques and social strategy behavioral models. Two populations of neurons were identified in the brain's ventral pallidum region (part of the basal ganglia) as key to underlying depressive behavior.

The new study found that specifically modifying pathways in these two areas in a mouse displaying depression led to improved behavioral changes similar to those of a healthy mouse. More importantly, this study provides strong insight to understanding the interaction between several brain areas in depression. Previous studies have mainly focused on the role of certain brain areas in isolation. Researchers in the new study were able to examine connections across multiple regions and how one impacted the other.

###

In addition to Knowland and Lim, coauthors include UC San Diego's Varoth Lilascharoen, Christopher Pham Pacia, Sora Shin and Eric Hou-Jen Wang.

The research was supported by the Klingenstein Foundation, Searle scholar program (Kinship foundation; Searle 15-SSP-229), the Whitehall foundation (2014-08-63), NARSAD young investigator grant (24094) and grants from the National Institutes of Health (MH107742 and MH108594). Lim received a National Institute of Mental Health Biobehavioral Research Award for Innovative New Scientists (BRAINS) in 2015. Lilascharoen is supported by an Anandamahidol Foundation Fellowship.

Media Contact

Mario Aguilera
[email protected]
858-822-5148
@UCSanDiego

http://www.ucsd.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Studying Tumor Stem Cell Role in Oral Cancer

January 17, 2026

HR020602 and Propofol: Safety in Pediatric Anesthesia

January 17, 2026

Evaluating Nevi Count: A Tool for Total Body Assessment

January 17, 2026

Hyperkyphosis Impacts Physical Function in Frail Seniors

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    77 shares
    Share 31 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Achieving Balanced Behavior Cloning from Imbalanced Datasets

Optimizing Torque Distribution in Electric Vehicles

Studying Tumor Stem Cell Role in Oral Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.