• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Synchrotron light used to show human domestication of seeds from 2000 BC

Bioengineer by Bioengineer
July 14, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Diamond Light Source

Scientists from UCL have used the UK's synchrotron facility, Diamond Light Source, to document for the first time the rate of evolution of seed coat thinning, a major marker of crop domestication, from archaeological remains.

Writing in the journal Scientific Reports, the authors present evidence for seed coat thinning between 2,000 BC and 1,200 BC in the legume horsegram (Macrotyloma uniflorum), a bean commonly eaten in southern India.

By using the high-resolution X-ray computed tomography (HRXCT) technique on Diamond's I13-2 beamline, the researchers were able to measure for the first time the coat thickness throughout the entire seed.

"Seed coat thickness is a great indicator of domestication, as thinner coats will mean faster germination of a seed when it is watered," explains Dorian Fuller, co-author on the paper. "But conventional methods of looking at the seed coat require breaking and destroying archaeological specimens."

"Being able to look at the seed coat thickness without breaking the sample is possible by other methods, but you can only look at a spot on the seed," adds Charlene Murphy, co-author on the paper. "The beamline at Diamond has allowed us to look at the entire seed, and has shown considerable variation within individual specimen's seed coat thickness."

This is the first time that HRXCT has been applied to entire archaeological seeds, with results suggesting that previous spot measurement thickness tests could be misleading. Of the twelve samples analysed, the seeds could be categorised into two distinct groups, thicker (wild type) seed coats, with averages thicknesses above 17 micrometres, and thinner (more domesticated) seed coats between 10 and 15 micrometres.

The results indicated that domestication of horsegram took place during the second millennium BC, with seed coats fair fixed in thickness by the early centuries AD. The findings also show the potential for HRXCT to be used to look at a variety of domesticated grains and pulses, such as peas.

Christoph Rau, Principal Beamline Scientist on I13, where the work was carried out, says "The beamline is a unique tool and is involved in a wide range of applications from high resolution imaging of biological tissues to palaeontological research. In this case, the beamline has enabled the team to produce 3D images of the seeds with incredible micrometer scale resolution, without damaging their precious samples"

"We're continuing to work with Diamond to look at other interesting archaeological seeds, and how they've become domesticated," concludes Fuller. "Peas are a great example of this – wild peas are ejected from their pods naturally, but domesticated peas only leave the pod when the cultivator removes them – a quite symbiotic relationship."

###

Notes for Editors

For further information regarding this press release, please contact:

Laura Holland
Diamond Light Source Ltd.
[email protected]
07786 391 037

About I13

At 250 metres in length, I13 is Diamond's longest beamline. It comprises two branchlines, which run independently of each other, and provide complementary X-ray imaging techniques. The Diamond Manchester Imaging Branchline (I13-2) performs real space imaging and tomography in the 8-30keV energy range. For work like this, the beamline can image samples of 0.1-10 mm thickness at spatial resolutions that can extend a little beyond a micron.

http://www.diamond.ac.uk/Beamlines/Materials/I13.html

For examples of the imaging capability of I13, see; http://www.diamond.ac.uk/Beamlines/Materials/I13/Diamond-Manchester_Imaging_Branchline/Data_gallery.html

About Diamond Light Source

Diamond Light Source is the UK's synchrotron science facility, and is approximately the size of Wembley Stadium.

It works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines.

Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research.

2017 marks a double celebration for Diamond – 15 years since the company was formed, and 10 years of research and innovation. In this time, researchers who have obtained their data at Diamond have authored over 5,000 papers.

http://www.diamond.ac.uk

About UCL (University College London)

UCL was founded in 1826. We were the first English university established after Oxford and Cambridge, the first to open up university education to those previously excluded from it, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has over 39,000 students from 150 countries and over 12,500 staff. Our annual income is more than £1 billion.

http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

Media Contact

Laura Holland
[email protected]
07-786-391-037

http://www.diamond.ac.uk

Related Journal Article

http://dx.doi.org/10.1038/s41598-017-05244-w

Share13Tweet7Share2ShareShareShare1

Related Posts

Enhancing Cellular Self-Organization for Optimal Function

Enhancing Cellular Self-Organization for Optimal Function

August 21, 2025
Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

August 21, 2025

Ume6 Complexes Shape Candida Biofilm Architecture

August 21, 2025

Think you can outsmart an island fox? Think again!

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maternal and Infant Gut Microbiota Linked to Infant Respiratory Infections

Wearable Devices Improve Parkinson’s Medication Adjustments: Trial

Beijing Tiantan Hospital Researchers Develop Innovative One-Stage Hybrid Surgery for Brain and Spine Tumors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.