• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

First aid in the brain: When language suddenly fails

Bioengineer by Bioengineer
July 12, 2017
in Health
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MPI CBS

Talking to each other is a complex matter. While chatting we have to recognise single words and phrases out of a flood of sounds. In parallel we have to think about an answer and to plan the movements of our lips and tongue. Every single step, from analysing the words to producing the language, requires a range of brain areas to work together. Until now, it remained a mystery as to how they collaborate — and what happens if one of the central areas is damaged.

Scientists at the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig discovered what happens when two crucial brain regions of our linguistic comprehension are inactive: They observed that failure of some regions can be compensated by the commitment of other areas, whereas others cannot.

"If the region in which the meaning of language is processed is impaired, the so-called left angular gyrus, our brain is able to balance it well. In this case the neighbouring area, the anterior inferior frontal gyrus, stands in and enhances its activity. This is surprising since it is originally responsible for the rhythmic structure of the words", study leader Gesa Hartwigsen explains. By taking on this role, the meaning of the words can be recognised nearly as fast as when the appropriate area fulfils its task. "If the anterior inferior frontal gyrus itself is impaired, its failure can hardly be compensated and its tasks are not taken over by another part of the language network, making it much harder to analyse the rhythmic structure of a word, that is to say its syllables."

The scientists presume that the ability to compensate an impaired process by another part of the brain depends on the hierarchy level on which the language is perturbed: Processing the rhythm of a word is such a basic mechanism that cannot be simply overtaken by another part. More complex processing stages, such as analysing the meaning of a word, could on the contrary be supported by simpler processes, since they are one of the underlying steps. More general processes can then provide support in order to maintain this ability.

Hartwigsen and her team conclude two things from these findings: "We can now estimate which injuries could be counterbalanced and on which of these it is worth focusing language training, for instance on the network which fills in", says the leader of the research group modulation of language networks. Furthermore, they confirmed the hypothesis of a hierarchical structure of language. According to this, during the processing of language, complex steps build on basic steps. Before we analyse the meaning of the word we have to process its sounds.

The neuroscientists examined these relationships with the help of transcranial magnetic stimulation (TMS). This method can interrupt the activity of single brain regions for a short period of time and can therefore measure the brain's reaction to this impairment. TMS therefore uses magnetic fields to specifically inhibit or stimulate single brain areas by weak electric stimulation through the scalp.

In this study of 17 healthy participants, the team inhibited both the areas of word meaning and of rhythmic structure for a short period. Subsequently they compared the abilities of these people in linguistic tasks – and noticed a considerably weaker performance only in those which demanded word analysing.

###

Media Contact

Gesa Hartwigsen
[email protected]
49-341-994-0162
@mpi_cbs

http://www.cbs.mpg.de/en

Original Source

http://www.cbs.mpg.de/731060/20170706-02 http://dx.doi.org/10.7554/eLife.25964

Share16Tweet7Share2ShareShareShare1

Related Posts

Food Addiction and Body Image Issues in Bariatric Candidates

November 8, 2025

Network Analysis: Adolescent Mental Health and School Adjustment

November 8, 2025

Promising Advances in Kidney Health Emerge from High-Impact Clinical Trials – Part 3

November 8, 2025

Spouse Loss, Exercise, and Mental Health in Rural Seniors

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Addiction and Body Image Issues in Bariatric Candidates

Exploring Spanish Roma’s Genetic Diversity and Structure

Network Analysis: Adolescent Mental Health and School Adjustment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.