• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How cells control nuclear size becomes clearer

Bioengineer by Bioengineer
July 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kazunori Kumi

Over a century since scientists first observed that cells and their nucleus grow at a constant ratio to each other, we are now closer to finding out how.

The cell cycle, the process of cell growth and division that sees "daughter" cells enlarge before dividing again, includes the nucleus – the cell's condensed genetic control center – simultaneously dividing and enlarging hand-in-hand with their cell.

The mechanism involved in this in-tandem augmentation has proven one of the great-unanswered questions of cell biology; the bigger the cell the bigger the nucleus, but what controls this proportional enlargement?

Assistant Professor Kazunori Kume of Hiroshima University, through his latest research into yeast cells, has discovered that the hoarding of genetic materials (mRNA) and proteins by the nucleus causes it to bulk up. He further proposes that this swelling is enabled by controlling the transport of mRNA and proteins from the nucleus into the encompassing liquid cytoplasm, and the amount of nuclear membrane supplied via lipid synthesis.

As it is already known that the consistent size ratio between cells and nuclei deviates with age, and also due to cancer, it is hoped these new findings could assist our understanding of body degeneration and its prevention.

Yeast, a single celled organism, shares many characteristics and a size similar to cells found in humans and other eukaryotes.

This latest discovery saw Assistant Professor Kume, from HU's Research Center for Healthy Aging, carry out a comprehensive search of the fission yeast genome in the hope of finding illusive genes that determine nucleus size.

Knowing that of the 5000 genes found in fission yeast, 2000 are essential for cell growth, he looked at the other 3000 in the hope that some might be involved in controlling the size of the nucleus instead.

One-by-one each of these 3000 genes was removed in isolation and the resultant mutated yeast cell was observed under the microscope.

By recording the dimensions of each of the resultant cells and their nucleus, he was able to calculate a cell-to-nucleus ratio – a painstaking process that paid off. He found 14 genes whose deletion lead to a greater cell-to-nucleus ratio than the usual 0.08, suggesting they were responsible for this ratio's maintenance.

Further investigation into these nuclei showed that the usual mechanisms required for transporting mRNA from inside the nucleus, where it is produced, to outside into the cell's cytoplasm, where it is required for protein production, was defective – meaning the mRNA couldn't get out!

mRNA molecules contain genetic information for producing proteins and true to form, analysis of the larger mutated nuclei showed that they contained, not only a higher concentration of mRNA but also mRNA derived proteins, causing them to swell.

This nuclear swelling was also seen to be dependent on lipid production, which is required for nuclear membrane expansion. Interestingly the researchers found that even disruption of lipid production alone deregulated nuclear membrane growth, resulting in an increased nuclear size.

While this research finally shines a light on cell-to-nucleus ratio maintenance, Assistant Professor Kume admits there is still a long way to go before they can fully understand what is occurring:

"There are so many questions that now need answering, what triggers these membrane changes? Does nuclear expansion cause cancer or result from it? What causes these specific genes to mutate? This research is just the first step into the unknown, It means I now have leads to follow and more mysteries to solve!"

###

Media Contact

Norifumi Miyokawa
[email protected]
81-824-244-427
@Hiroshima_Univ

http://www.hiroshima-u.ac.jp/index.html

Related Journal Article

http://dx.doi.org/10.1371/journal.pgen.1006767

Share12Tweet7Share2ShareShareShare1

Related Posts

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

September 2, 2025
Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

September 2, 2025

Evaluating Mindfulness Intervention for Self-Injury Recovery

September 2, 2025

SPS Measures: Challenges and Opportunities in Ag Trade

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

Evaluating Mindfulness Intervention for Self-Injury Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.