• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Dartmouth researchers receive large NIH grant for cooperative lung cancer research

Bioengineer by Bioengineer
July 6, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Norris Cotton Cancer Center

LEBANON, NH – Significant research funding in the form of a five-year, $12.1 million U19 Grant from the National Institutes of Health (NIH) has been awarded to a collaboration of research teams co-led by Dartmouth's Christopher Amos, PhD, to study and improve precision of lung cancer risk and screening.

The title of this multiple-PI grant is "Integrative analysis of lung cancer etiology and risk" and the total award over five years totals $12,177,381. "The goal is to enhance our understanding of gene-environment interactions in lung cancer etiology and to move the observations about risk for lung cancer towards translation" said Amos. For more than 30 years lung cancer has remained the most common cancer, and carries with it the highest cancer mortality rate worldwide, largely due to late-stage diagnosis. With this grant funding, the team particularly aims to more precisely target lung cancer screening to reduce its burden and improve the yield of detection for early lung cancer.

This research funding relates to and greatly extends the team's recently published Nature Genetics paper, "Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes." The paper details the results of a huge study that identified several new variants for lung cancer risk that will translate into improved understanding of the mechanisms involved in lung cancer risk. Using the OncoArray genotyping platform developed by multiple cancer consortia, the genomewide association study identifies new susceptibility loci for lung cancer. Although tobacco smoking is the main risk factor, past studies have also shown heritability of lung cancer as a concern, though much of it remains unexplained.

The cooperative grant study will be arranged into three complementary projects working towards a unifying goal. Project 1, Genomic Predictors of Smoking Lung Cancer Risk, studies large samples to identify variants that affect risk through genetic factors and environmental exposures. Project 2, Biomarkers of Lung Cancer Risk evaluates a wide range of risk biomarkers that have been implicated as promising lung cancer risk biomarkers and will identify validated risk biomarkers for use in risk prediction models. Project 3, Translating Molecular and Clinical Data to Population Lung Cancer Risk Assessment establishes an integrated risk prediction model based on lung cancer CT screening populations in the United States, Canada and Europe. It combines personal health and exposure history with targeted molecular and genomic profiles and lung function data, and establishes nodule assessment models for individuals qualified by the probability models. "We believe that this level of integration will yield novel observations about lung cancer development and provide unique translational opportunities to refine screening eligibility criteria" said Amos. "Ultimately, it will help improve screening efficiency and further reduce lung cancer mortality."

Christopher Amos is Chair of the Department of Biomedical Data Science, Head of the Center for Genomic Medicine, Interim Director of Norris Cotton Cancer Center, and Associate Director for Population Sciences Geisel School of Medicine at Dartmouth. He serves as the communicating PI, the PI of the administrative core and the PI of Project 1. Other Dartmouth investigators include Ivan Gorlov, PhD, Olga Gorlova, PhD, and Jiang Gui, PhD. Paul Brennan, PhD from the International Agency for Research in Cancer, part of the World Health Organization in Lyon, France is the Project 2 leader, focusing on identifying and validating biomarkers of early lung cancer. Rayjean Hung, PhD, at the University of Toronto is the PI of project 3 focusing on applying these biomarkers in all the world's largest screening cohorts. Xihong Lin, PhD, at the Chan Harvard School of Public Health is the PI of the biostatistics core.

###

About Norris Cotton Cancer Center at Dartmouth-Hitchcock:

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth's Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua and Keene, NH, and St. Johnsbury, VT, and at partner hospitals throughout New Hampshire and Vermont. It is one of 48 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

Media Contact

Jaime Peyton
[email protected]
603-653-3615

http://www.dhmc.org/webpage.cfm?org_id=796

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.