• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UK’s Farman is co-author of important wheat disease study

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Paul Bachi

LEXINGTON, Ky. (July 7, 2017) – A University of Kentucky plant pathologist is part of an international team of researchers who have uncovered an important link to a disease which left unchecked could prove devastating to wheat. UK College of Agriculture, Food and Environment faculty member Mark Farman co-authored an article being published today in Science, the journal of the American Association for the Advancement of Science (AAAS).

Historically, wheat in Kentucky and across North America has not been susceptible to a recently emerged fungus referred to as wheat blast. However, in 2011, UK researchers discovered a single diseased wheat head in a research plot at the UK Research and Education Center in Princeton, KY. Then, in 2016, a wheat blast epidemic swept through Bangladesh. This year, the disease has again hit Bangladesh and is also present in India, raising the concern that wheat blast may soon become pandemic. The sudden spread of the fungus has prompted intensive global efforts to understand the disease and to breed blast-resistant wheat.

Research in Farman's lab in the UK Department of Plant Pathology revealed that the Kentucky pathogen collected in 2011 is genetically distinct from South American wheat blast and instead is very closely related to strains found on annual ryegrass and tall fescue in the U.S. This suggested that the Princeton incident was not due to introduction of an exotic pathogen but had probably arisen via a 'host jump' from forage grasses to wheat. In contrast, his group found that the 2016 Bangladeshi epidemic very likely arose through the introduction of a South American strain of the fungus.

Wheat blast is caused by a fungus which infects wheat heads and prevents seed production. At present, there is no natural resistance to the disease in cultivated wheat, and crop losses approaching 100% are common. Fungicides show limited effectiveness due to the development of resistance within the fungus.

"Blast was first identified in Brazil in the 1980's and quickly spread to surrounding countries, including Argentina, Paraguay and Bolivia," said Farman. "Until recently, the disease remained restricted to South America."

Now, with collaborators from Japan and the U.S., Farman has found that the 2011 Kentucky wheat blast strain experienced a mutation in a key gene that codes for a protein that is normally recognized by wheat cultivars that possess a key blast resistance protein. This mutation is predicted to compromise the function of the 'good' protein, thereby allowing the fungus to escape the wheat resistance response by avoiding recognition. Research performed by Farman's collaborators has established independent mutations in the same gene were likely pivotal events in the emergence of this devastating disease.

"This study provides important insights into the mutational events that underlie the evolution of new crop diseases," said Farman. "This information will help to spur the development of crop varieties with more durable resistance."

###

To read the complete Science article, go to http://www.sciencemag.org/journals.

Media Contact

Carl Nathe
[email protected]
859-257-2635
@universityofky

http://www.uky.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Triazophos Effects on Immune Responses in Snakehead Fish

September 5, 2025
Unraveling Trebouxiophyceae Algae: Evolutionary and Ecological Insights

Unraveling Trebouxiophyceae Algae: Evolutionary and Ecological Insights

September 5, 2025

Boosting Quasi-2D Perovskite Solar Cell Efficiency and Stability with Dicyandiamide Interface Engineering

September 5, 2025

Nitrogen Boosts Wheat Recovery via TaSnRK2.10 Pathway

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rising Inpatient Admissions for Youth Eating Disorders in Ireland

Intronic Element Controls Ligase IV, Directs Thymocyte Development

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.