• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study offers clue to memory formation in the brain

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IBP

While memory loss makes an engaging theme for a movie, in real life, learning and memory may be the most intriguing topics in brain science. How does the brain help us learn from our daily experience? Where is memory formed and stored in the brain? What is the mechanism for memory loss, whether caused by Alzheimer's disease or by an accident, such as in 50 First Dates?

In a new study published on July 5 in Neuron, a research group led by Professor CAO Peng of the Institute of Biophysics (IBP) of the Chinese Academy of Sciences provides some clues as to memory formation in the brain.

In his very famous Hebbian Theory, Dr. Donald Hebb proposed that the brain learns new tasks or skills by modifying the efficacy of synaptic junctions between individual neurons. Although many studies support the "Memory-Synapse Specificity" Hypothesis, direct evidence supporting the hypothesis was lacking until now. In this new study, however, CAO's group provides direct experimental evidence for the "Memory-Synapse Specificity" Hypothesis.

The IBP research shows that socially acquired olfactory memory is associated with a synaptic long-term potentiation (LTP) event that occurs at a specific type of synapse on identified olfactory bulb neurons within a particular glomerular unit (Fig. 1). Such LTP lasts at least two weeks.

By genetically manipulating machinery for IGF1 exocytosis, the researchers identified a detailed signaling pathway that mediates this novel form of LTP, which had not been identified previously. Moreover, the study shows that this type of LTP is essential for olfactory memory but not for odor perception as such, demonstrating that this LTP encodes, at least in part, socially acquired olfactory memory.

In the romantic comedy 50 First Dates, Lucy gets up every morning without remembering anything that happened to her the day before. Her memory loss is due to a car accident.

Testing and validating the "Memory-Synapse Specificity" Hypothesis has been a persistent challenge in brain science because it was not previously possible to link a specific type of synapse to a particular behavior and memory.

CAO and his group achieved this goal by exploiting the exquisite microcircuits in the olfactory bulb, and using mice in which olfactory circuits associated with a specific odor can be visually identified. It is the first demonstration that LTP at a particular type of synapse in an identified circuit encodes a defined memory.

Many intriguing and fundamental questions about learning and memory remain to be solved, but this study provides an excellent starting point for future research.

###

Media Contact

CAO Peng
[email protected]
86-106-488-8528

http://english.cas.cn/

############

Story Source: Materials provided by Scienmag

Share14Tweet8Share2ShareShareShare2

Related Posts

NUS Medicine and CHA University Collaborate to Harness AI in Unlocking Novel Solutions for Reversing Male Infertility Decline

NUS Medicine and CHA University Collaborate to Harness AI in Unlocking Novel Solutions for Reversing Male Infertility Decline

November 10, 2025
2’-Fucosyllactose Reverses NASH by Gut Flora Remodeling

2’-Fucosyllactose Reverses NASH by Gut Flora Remodeling

November 10, 2025

New Study Uncovers Unexpected Links Between Family Size and Health Outcomes

November 10, 2025

RASA1 Reveals Z/W Dosage Effects on Chicken Gonads

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NUS Medicine and CHA University Collaborate to Harness AI in Unlocking Novel Solutions for Reversing Male Infertility Decline

Non-Coding RNAs Predict Chronic Lymphocytic Leukemia Outcomes

Flexible Perovskite/Silicon Tandem Solar Innovation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.