• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Virus-derived expression vectors as gene therapy vehicles

Bioengineer by Bioengineer
July 6, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Even as new viruses are being identified, the emerging field of virus discovery, identification of their nucleotide sequences, gene expression patterns and complexities of virus-host interactions at the molecular level are being used in recent years towards applications in the human medicine as well as veterinary, agricultural and other biotechnological purposes. Several patents pertaining to this field have been filed successfully and the current review addresses recent patents pertaining to the use of virus sequences as RNA silencing agents and virus-derived expression vectors as gene therapy vehicles. Specifically, these patents demonstrate the use of viral sequences to silence positive-sense RNA viruses such as Flaviviruses, Picornaviruses, Togaviruses, Herpesviruses and minus-stranded RNA viruses such as Filoviruses, virus-induced gene silencing in plants, expression vectors of Poxviruses, Flaviviruses, Influenza viruses, Adeno-associated viruses, expression vectors based on plant viruses and viral expression vectors applicable to the fish industry. Virus-derived short double-stranded RNAs and DNA-based antisense antiviral compounds are used at low dosage to specifically and effectively mediate RNA interference or RNA silencing and downregulate viral replication. Also, Virus-Induced Gene Silencing (VIGS) is used to identify gene functions in plants. Expression vectors based on poxviruses engineered to code for HIV and other viral immunogens are popular vaccine candidates. Pseudoinfectious viruses that can undergo a single round of infection in vivo, mimicking whole viral infections while inducing strong T- and B-cell immunity are also discussed. Another patent discusses a multi-vector scheme for generating recombinant and reassortant Influenza Viruses. A recombinant Papaya Mosaic Virus coat protein forming virus-like particles (VLPs) with Influenza Virus epitopes exposed on their surface is also mentioned. However, the current inventions addressed in these patents require scrupulous testing in clinical trials (for medical and veterinary uses) and field trials (for agricultural uses) that are yet to be achieved. It is also important to consider the influence of prior host-environment interactions and the previous history of exposure to pathogenic organisms. Testing of these virus-derived genetically engineered vehicles has to go further beyond mere success in laboratory-derived cell culture systems and experimental animals / plants.

###

For more information, please visit http://www.eurekaselect.com/150556

Reference: Venkataraman S et al (2017). Virus-Based RNA Silencing Agents and Virus-Derived Expression Vectors as Gene Therapy Vehicles, Recent Patents on Biotechnology, DOI: 10.2174/1872208311666170301103722

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

http://dx.doi.org/10.2174/1872208311666170301103722

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Placental DNA Mutations, Stress, and Infant Emotions

Placental DNA Mutations, Stress, and Infant Emotions

October 18, 2025
Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

Unraveling Gene Co-Expression in Trypanosoma cruzi Life Cycle

October 18, 2025

Mapping Hippocampal Proteins in Alzheimer’s Disease Model

October 18, 2025

Exploring ADP-Ribosyltransferases in Pathogenic Legionella

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1260 shares
    Share 503 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    283 shares
    Share 113 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    118 shares
    Share 47 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reevaluating Ineffective Practices in Pressure Injury Care

Improving Carbon Reduction Strategies with OCO and ICOS

Placental DNA Mutations, Stress, and Infant Emotions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.