• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Photo-responsive protein hydrogels as agent for controlled stem cell/protein release

Bioengineer by Bioengineer
July 6, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Department of Chemical and Biological Engineering, HKUST

Hydrogels, noted for their biomimetic properties, are the leading materials for biomedical applications, such as drug delivery and stem cell therapy. Traditional hydrogels made up of either synthetic polymers or natural biomolecules often serve as passive scaffolds for molecular or cellular species, which render these materials unable to fully recapitulate the dynamic signaling involved in biological processes, such as cell/tissue development.

Photo-responsive hydrogels are of particular interest to material scientists, because light is regarded as an ideal tool to control molecules or cell behavior with high spatiotemporal precision and little invasiveness. The major challenge for scientist is how to assemble these complex globular proteins into supramolecular architectures efficiently while preserving their function.

In a recent research, a group of scientists from The Hong Kong University of Science and Technology created a B12-dependent light-sensing hydrogel by covalently stitching together the photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) proteins under mild conditions. This direct assembly of stimuli-responsive proteins into hydrogels represents a versatile solution for designing "smart" materials and opens up enormous opportunities for future material biology.

The findings were published in the journal PNAS on June 6, 2017 (doi: 10.1073/pnas.1621350114).

"In our research, we were able to create an entirely recombinant protein-based light-sensitive hydrogels by covalently assembling the CarHC photoreceptor proteins using genetically encoded SpyTag-SpyCatcher chemistry," said Fei Sun, author of the paper and assistant professor at HKUST's department of chemical and biomolecular engineering. "The AdoB12-dependent CarHC tetramerization has been shown to be essential for the formation of an elastic hydrogel in the dark, which can undergo a rapid gel-sol transition caused by light-induced CarHC disassembly."

"The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-sol transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability." Sun added. "Given the growing demand for creating stimuli-responsive "smart" hydrogels, the direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials."

###

Media Contact

Clare Chan
[email protected]
852-235-86306

http://www.ust.hk

Related Journal Article

http://dx.doi.org/10.1073/pnas.1621350114

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Chemical Reprogramming Transforms Human T Cells to Pluripotency

January 16, 2026

Revolutionary Model Enhances Drug Interaction Prediction

January 16, 2026

Advancements in Addiction Medicine Education Consultations

January 16, 2026

Empowering Seniors: Community-Based Approach to Aging

January 16, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Acute Pancreatitis Worsens Outcomes in Pediatric Stem Cell Patients

Chemical Reprogramming Transforms Human T Cells to Pluripotency

Enhancing Shanshui Animation with Perlin Noise Techniques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.