• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The costs of coal storage and its impact on disadvantaged communities

Bioengineer by Bioengineer
July 5, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

While the negative health and environmental effects of mining and burning coal are well documented, simply transporting and storing coal can also adversely affect the health outcomes of individuals living near coal-fired power plants. New research explores the health and environmental costs of coal storage and transportation, finding that increases in the level of coal stockpiles held by U.S. power plants increase local air pollution levels, which in turn increases the average infant and adult mortality rates in the communities near these plants.

The new National Bureau of Economic Research working paper, "Handle with Care: The Local Air Pollution Costs of Coal Storage," was written by Akshaya Jha of Carnegie Mellon University's Heinz College and Nicholas Muller of Middlebury College.

"Despite the thicket of environmental regulations relevant to coal, our paper uncovers an as yet unstudied dimension of coal use that we argue requires policy intervention — the environmental consequences of the coal purchase and storage behavior of U.S. power plants," said Jha.

Jha and Muller utilized monthly, plant-level data on coal purchases and stockpiles provided by the Energy Information Administration as well as air quality data from the Environmental Protection Agency for the period of 2002 to 2012 to determine how coal stockpiles affect concentration of fine particulates (PM2.5) within 25 miles of coal plants. They assessed how increases in PM2.5 affect mortality rates by studying mortality data provided by the Centers for Disease Control and Prevention. Using these data, they estimated that a 10 percent increase in coal stockpiles led to a 0.07 percent increase in air pollution for communities up to 25 miles away from coal plants. They next demonstrated that a 10 percent increase in PM2.5 levels causes average adult mortality rates to rise by 1.1 percent and average infant mortality rates to rise by 6.6 percent in those communities.

Finally, the authors combined their estimates for the effect of coal transportation and storage on PM2.5 and the effect of PM2.5 on mortality rates to calculate the local air pollution costs of coal procurement to areas around power plants. They determined that the local environmental cost of PM2.5 increases is $182.67 per ton of coal stockpiled and the local air pollution cost per ton of coal delivered is $202.51. To put these figures in perspective, the average U.S. coal-fired power plant pays $48.00 per ton for coal, stockpiles 212,781.6 tons of coal and has 106,235 tons of coal delivered to it each month.

The authors' results suggest that most of the local air pollution costs of coal procurement and storage are borne by the communities within 25 miles of a coal plant. As stated in the paper: "as people living in census tracts with power plants have lower per-capita incomes and educational attainment on average relative to residents of census tracts without power plants, the highly localized environmental costs of coal procurement disproportionately affect economically disadvantaged communities."

The authors propose low-cost policy solutions that might help mitigate these negative effects. Requiring that coal stockpiles and railcars containing coal be covered is a less expensive and unobtrusive way to reduce PM2.5 levels and reduce the environmental costs. "These types of policies should be easier to implement relative to global anti-pollution policy initiatives since jurisdictions do not need to coordinate with one another," said Jha. "Given that the local environmental costs of coal storage and handling are incurred primarily by communities living near coal-fired power plants, we hope that local policymakers will consider these simple and easy solutions."

###

Media Contact

Caitlin Kizielewicz
[email protected]
@CMUScience

http://www.cmu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.