• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The gene behind follicular lymphoma

Bioengineer by Bioengineer
June 28, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Elisa Oricchio/Natalya Katanayeva/EPFL

Follicular lymphoma is an incurable cancer that affects over 200,000 people worldwide every year. A form of non-Hodgkin lymphoma, follicular lymphoma develops when the body starts making abnormal B-cells, which are white blood cells that in normal conditions fight infections. This cancer is associated with several alterations of the cell's DNA, but it has been unclear which gene or genes are involved in its development. EPFL scientists have now analyzed the genomes of more than 200 patients with follicular lymphoma, and they discover that a gene, Sestrin1, is frequently missing or malfunctioning in FL patients. The discovery opens to new treatment options and it is now published in Science Translational Medicine.

One of the common features of follicular lymphoma is a genetic abnormality between two chromosomes (14 and 18). In an event known as "chromosomal translocation" the two chromosomes "swap" certain parts with each other. This triggers the activation of a gene that protects cells from dying, making cells virtually immortal — the hallmark of a tumor.

Moreover, approximately 30% of follicular lymphoma patients lose also a portion of chromosome 6, affecting multiple genes involved in suppressing the emergence of a tumor. These patients typically have poor prognosis. Another 20 % of patients have alterations causing chromosomal disorganization and the consequent malfunctioning of several genes and proteins. The bottom line is that for both group of patients it is very difficult to pinpoint which of all the affected genes are actually causing the disease.

The lab of Elisa Oricchio at EPFL, with colleagues from the US and Canada, analyzed the genomes of over 200 follicular lymphoma patients. Their analyses revealed that a specific gene, Sestrin1, can be harmed by both loss of chromosome 6 and silenced in patients.

Sestrin1 helps the cell defending itself against DNA damage — for example after exposure to radiation — and oxidative stress. In fact, Sestrin1 is part of the cell's anti-tumor mechanism that stops potentially cancerous cells from growing.

Disruption of a region in chromosome 6 or epigenetic modifications of the DNA block Sestrin1 expression and these contribute to the development of Follicular Lymphoma.

Beyond identifying the Sestrin1 gene as frequently altered in FL patients, the scientists demonstrated that Sestrin1 is able to suppress tumors in vivo. They showed that Sestrin1 exerts its anti-tumor effects by blocking the activity of a protein complex called mTORC1, which is well known for controlling protein synthesis as well as acting as a sensor for nutrient or energy changes in the cell.

Finally, the identification of loss of Sestrin1 as a key event behind the development of follicular lymphoma is particular important because it helps identifying patients that will benefit from new therapies. Indeed, this study shows that the therapeutic efficacy of a new drug that is currently in clinical trial depends on Sestrin1. Importantly, this dependency can be extended beyond follicular lymphoma to other tumor types.

###

This work was carried out in collaboration with the Memorial Sloan Kettering Cancer Center (New York), Cornell University, the University of Lausanne, Goodwin Research Laboratories, Trinity College Dublin, the BC Cancer Agency, the University of British Columbia, and the Princess Margaret Cancer Centre (Toronto).

Funding

Swiss National Science Foundation, EPFL's Swiss Institute for Experimental Cancer Research (ISREC), the Giorgi-Cavaglieri Foundation, the National Cancer Institute, the Lymphoma Research Foundation, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Memorial Sloan Kettering Cancer Center, the National Institutes of Health, the Starr Cancer Consortium, the Geoffrey Beene Cancer Research Center, the Leukemia and Lymphoma Society, and the Princess Margaret Cancer Centre.

Reference

E. Oricchio, N. Katanayeva, M. C. Donaldson, S. Sungalee, P. P. Joyce, W. Béguelin, E. Battistello, V. R. Sanghvi, M. Jiang, Y. Jiang, M. Teater, A. Parmigiani, A. V. Budanov, F. C. Chan, S. P. Shah, R. Kridel, A. M. Melnick, G. Ciriello, H-G. Wendel. Genetic and epigenetic inactivation of SESTRIN1 controls mTORC1 and response to EZH2 inhibition in follicular lymphoma. Science Translational Medicine 9, eaak9969 (2017). DOI: 10.1126/scitranslmed.aak9969

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aak9969

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.