• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stem-cell researchers solve mystery of relapse in acute myeloid leukemia

Bioengineer by Bioengineer
June 28, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University Health Network

(TORONTO, Canada – June 28, 2017) – Leukemia researchers led by Dr. John Dick have traced the origins of relapse in acute myeloid leukemia (AML) to rare therapy-resistant leukemia stem cells that are already present at diagnosis and before chemotherapy begins.

They have also identified two distinct stem-cell like populations from which relapse can arise in different patients in this aggressive cancer that they previously showed starts in blood stem cells in the bone marrow.

The findings – published today in Nature (doi:10.1038/nature22993) – provide significant insights into cell types fated to relapse and can help accelerate the quest for new, upfront therapies, says Dr. Dick, a Senior Scientist at Princess Margaret Cancer Centre, University Health Network, and Professor in the Department of Molecular Genetics, University of Toronto. He holds the Canada Research Chair in Stem Cell Biology and is Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research. This study was primarily undertaken by post-doctoral fellow Dr. Liran Shlush and Scientific Associate Dr. Amanda Mitchell.

"For the first time, we have married together knowledge of stem cell biology and genetics – areas that historically have often been operating as separate camps – to identify mutations stem cells carry and how they are related to one another in AML," says Dr. Dick, who pioneered the cancer stem cell field by identifying leukemia stem cells in 1994. A decade ago, he replicated the entire human leukemia disease process by introducing oncogenes into normal human blood cells, transplanting them into xenografts (special immune-deficient mice that accept human grafts) and watching leukemia develop – a motherlode discovery that has guided leukemia research ever since.

The researchers set out to solve the mystery of AML relapse by analysing paired patient samples of blood taken at the initial clinic visit and blood taken post-treatment when disease recurred.

"First, we asked what are the similarities and differences between these samples. We carried out detailed genetic studies and used whole genome sequencing to look at every part of the DNA at diagnosis, and every part of the DNA at relapse," says Dr. Dick. "Next, we asked in which cells are genetic changes occurring."

The two-part approach netted a set of mutations seen only at relapse that enabled the team to sift and sort leukemic and normal stem cells using tools developed in the Dick lab a few years ago to zero in on specific cell types fated to relapse.

"This is a story that couldn't have happened five years ago, but with the evolution of deep sequencing, we were able to use the technology at just the right time and harness it with what we've been working on for decades," he says.

Today's findings augment recent research also published in Nature (Dec.7, 2016) detailing the team's development of a "stemness biomarker" – a 17-gene signature derived from leukemia stem cells that can predict at diagnosis which AML patients will respond to standard treatment.

Dr. Dick says: "Our new findings add to that knowledge and we hope that we will soon have a new biomarker that will tell whether a patient will respond to standard chemotherapy, and then another to track patients in remission to identify those where treatment failed and the rare leukemia stem cells are coming back.

"These new kinds of biomarkers will lead to new kinds of clinical trials with targeted chemotherapy. Right now, everybody gets one size fits all because in AML we've never had any opportunity to identify patients upfront, only after they relapse. Now we have the first step to identify these patients at the outset and during remission."

###

The research was funded by the Ontario Institute for Cancer Research, the Cancer Stem Cell Consortium via Genome Canada and the Ontario Genomics Institute, the Canadian Institutes of Health Research, the Canadian Cancer Society, the Terry Fox Foundation, a Canada Research Chair and The Princess Margaret Cancer Foundation.

About Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre has achieved an international reputation as a global leader in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital, Toronto Rehabilitation Institute and the Michener Institute for Education; all affiliated with the University of Toronto. For more information, go to http://www.theprincessmargaret.ca or http://www.uhn.ca .

Media Contact

Jane Finlayson
[email protected]
416-946-2846
@UHN_News

http://www.uhn.on.ca/

Related Journal Article

http://dx.doi.org/10.1038/nature22993

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.