• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Harnessing cancer’s methylation footprint for more precise diagnosis and prognosis

Bioengineer by Bioengineer
June 27, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a new study, published online in the July 26 issue of PNAS, researchers at University of California San Diego School of Medicine, with colleagues in Xijing Hospital and Sun Yat-sen Cancer Center in China, report that DNA methylation can provide effective markers for at least four major cancers, not only correctly differentiating malignant tissues from normal, but also providing information on prognosis and survival.

"Choosing the proper cancer treatment with the best chance of recovery and survival depends greatly upon accurately diagnosing the specific type or subtype of cancer," said Kang Zhang, MD, PhD, founding director of the Institute for Genomic Medicine and co-director of biomaterials and tissue engineering at the Institute of Engineering in Medicine, both at UC San Diego School of Medicine. "If you can do that using a minimally invasive biopsy, it has significant implications for cancer science and medicine. Using DNA methylation markers may be a new and more effective a way forward."

DNA methylation involves methyl groups — one carbon atom bonded to three hydrogen atoms — attaching to DNA molecules. It is a fundamental epigenetic process that regulates gene function without changing the DNA sequence of a gene, essential to normal development and associated with numerous key processes, including initiation and progression of cancer.

Zhang and colleagues looked at DNA methylation for differentiating tumor tissue and normal tissue for the four most common cancers (lung, breast, colon and liver) in three different databases: a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples; a testing cohort of 791 tumor samples from The Cancer Genome Atlas and 93 matched adjacent normal tissue samples and another independent testing Chinese cohort of 394 tumor samples; and 324 matched adjacent normal tissue samples.

They found that DNA methylation analysis could predict cancer versus normal tissue with more than 95 percent accuracy in the three cohorts, comparable to typical diagnostic methods, according to Zhang.

In addition, the analysis correctly identified 97 percent colorectal cancer metastases to the liver and 94 percent colorectal cancer metastases to the lung. "Since 10 percent of cancers present as metastatic lesions or cancers of unknown primary origin, identification of tissue of origin is critical for choosing a correct therapy. This new simple method will be of great value to pinpoint the primary source of the tumor," said Michael Karin, co-senior author of the study and Distinguished Professor of Pharmacology, also at UC San Diego School of Medicine.

Zhang suggested DNA methylation has the potential to improve outcomes by providing more accurate diagnoses, particularly of relatively indolent or aggressive tumors that may require more or less aggressive treatment.

"Although we focused on just four common cancers here, we expect that DNA methylation analysis could be easily expanded to aid diagnoses of a much larger number of cancers," said Zhang. "A great benefit is that this approach requires only a small amount of tissue to obtain adequate DNA for analysis, potentially allowing the use of less invasive biopsies or biopsies of metastatic lesions where the tumor is of unknown primary cancer type."

He said more studies have been planned to fully explore the clinical applications and potential of DNA methylation and its role in future personalized cancer care.

###

Co-authors include: Xiaoke Hao, Fourth Military Medical University, Xi'an, China; Huiyan Luo and Rui-hua Xu, Sun Yat-sen University Cancer Center, Guangzhou, China; Michal Krawczyk, Wei Wei, Ken Flagg, Jiayi Hou, Shaohua Yi, Maryam Jafari, Danni Lin, Christopher Chung, Bennett A. Caughey, William Shi, Jie Zhu, Xin Fu, Edward Zhang, Charlotte Zhang, and Debanjan Dhar, UC San Diego; Heng Zhang, Lianghong Zheng, and Rui Hou, Chinese Academy of Sciences, Shanghai, China; and Gen Li and Liang Zhao, Guangzhou Youze Biological Pharmaceutical Technology Company, Guangzhou, China.

Media Contact

Scott LaFee
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

http://dx.doi.org/10.1073/pnas.1703577114

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Dydrogesterone vs. Vaginal Progesterone in IVF Support

September 2, 2025

Nursing Home Residents: Reducing Unnecessary ER Visits

September 2, 2025

Tailored Diabetes Education Boosts Adherence in Youth

September 2, 2025

Flipped Learning Boosts Nursing Students’ Inhalation Skills

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dydrogesterone vs. Vaginal Progesterone in IVF Support

Nursing Home Residents: Reducing Unnecessary ER Visits

Tailored Diabetes Education Boosts Adherence in Youth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.