• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study identifies key player in heart enlargement

Bioengineer by Bioengineer
June 27, 2017
in Biology
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Graphic by Julie McMahon

CHAMPAIGN, Ill. — The heart is a dynamic muscle that grows and shrinks in response to stressors such as exercise and disease. The secret to its malleability lies in individual cells, which get bigger or smaller depending on the heart's needs. A new study of mouse hearts reveals a previously unknown mechanism by which heart cells control their size by ramping up or stopping the production of a key factor called PABPC1.

The findings, reported in the journal eLife, could assist in the development of therapeutics that promote healthy heart growth and prevent disease.

During exercise, the heart beats harder to pump oxygen to the muscles, and heart cells adapt over time by boosting production of specific proteins to increase in size, said University of Illinois biochemistry professor Auinash Kalsotra, who led the new study with postdoctoral researcher Sandip Chorghade and graduate student Joseph Seimetz. After a prolonged period without exercise, the heart cells return to a normal size, Kalsotra said.

"Heart cells also grow during cardiovascular disease – again requiring greater amounts of new protein synthesis to support the growth," he said. "However, even though this is initially a protective response, this prolonged growth leads to further complications that can eventually lead to heart failure."

In the new study, the researchers focused on PABPC1, a protein that binds to RNA and aids in the process of translating the RNA into proteins. Scientists had long assumed all cells needed PABPC1 to survive and make new proteins. The new study challenges this assumption.

Even though PABPC1 RNA is present in all human and mouse cells, the protein itself is absent in the adult heart, Kalsotra and his colleagues discovered.

"Our study revealed that the protein disappears in adult heart cells, reappearing only when the cells need to grow during exercise and disease," Kalsotra said.

"The finding explains why heart cells produce much lower levels of new proteins than other tissues in the body, a fact that was known but not understood until now," Seimetz said.

"Maintaining a heartbeat takes an enormous amount of energy. Because of this, heart cells need to be more efficient at making proteins," Seimetz said. "However, during growth, when cells need to make extra proteins, they turn on the PABPC1 switch to give protein production a boost."

"The finding that PABPC1 is usually not present in adult heart cells until needed for growth suggests that if you could control the function of this protein, then you could promote healthy growth and prevent disease," said Kalsotra, who also is affiliated with the Carl R. Woese Institute for Genomic Biology at Illinois.

###

The National Institutes of Health supported this research.

Editor's notes:

To reach Auinash Kalsotra, call 217-300-7654; email [email protected].

The paper "Poly(A) tail length regulates PABPC1 expression and tunes translation during heart development and cardiac hypertrophy" is available online.

To reach Auinash Kalsotra, call 217-300-7654; email [email protected].

The paper "Poly(A) tail length regulates PABPC1 expression and tunes translation during heart development and cardiac hypertrophy" is available online or from the U. of I. School of Molecular and Cellular Biology.

Media Contact

Steph Adams
[email protected]
217-333-2032
@NewsAtIllinois

http://www.illinois.edu

Original Source

https://news.illinois.edu/blog/view/6367/524152 http://dx.doi.org/10.7554/eLife.24139

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

August 15, 2025
blank

Sparring Saigas Triumph at the 2025 BMC Journals Image Competition

August 15, 2025

“‘Use It or Lose It’: The Island That Transformed a Bird Species”

August 15, 2025

Breast Milk Antibodies Shape Early Immune Development in Mouse Intestine

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

Sustainable Innovation: Advancing High-Yield, Eco-Friendly Technologies

Innovative Network Offers Promising Advances in Predicting Health Issues in Dogs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.