• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Magnetic implants used to treat ‘dancing eyes’

Bioengineer by Bioengineer
June 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team has successfully used magnets implanted behind a person's eyes to treat nystagmus, a condition characterised by involuntary eye movements.

The case study, published in Ophthalmology and led by UCL and University of Oxford academics, described the implantation of a newly developed set of magnets in the socket beneath each eye of one patient with nystagmus. It's the first description of a successful use of an oculomotor prosthesis, or an implant that controls eye movement.

"Our study opens a new field of using magnetic implants to optimise the movement of body parts," said Dr Parashkev Nachev (UCL Institute of Neurology), the lead author of the paper.

Nystagmus involves a rhythmic oscillation, or flickering of the eyes, and is sometimes called 'dancing eyes.' It often results in oscillopsia, the perception of constant movement of the visual field. The condition affects close to 1 in 400 people and can be both intrinsically disabling and cause reduced visual acuity.

"Nystagmus has numerous causes with different origins in the central nervous system, which poses a challenge for developing a pharmaceutical treatment, so we chose to focus on the eye muscles themselves. But until now, mechanical approaches have been elusive because of the need to stop the involuntary eye movements without preventing the natural, intentional movements of shifting gaze," Dr Nachev said.

The patient who underwent the procedure developed nystagmus refractory to conventional treatment in his late 40s due to Hodgkin's lymphoma, with great impact on his life, including loss of employment. His difficulties prompted the research team to investigate the use of an oculomotor prosthesis which had previously been described theoretically, but not confirmed in practice.

The research team developed a prosthesis involving one magnet which is implanted on the orbital floor (the bone at the bottom of the eye socket), interacting with a smaller magnet sutured to one of the extraocular muscles, which control the eye's movement. The magnets are encased in titanium, which can be safely embedded internally, thus enabling the magnetic force to be applied without causing any damage.

"Fortunately the force used for voluntary eye movements is greater than the force causing the flickering movements, so we only needed quite small magnets, minimising the risk of immobilising the eye," said Professor Quentin Pankhurst (UCL Medical Physics & Biomedical Engineering), who led the design of the prosthesis.

Before implantation, the magnets were tested while attached to a custom-made contact lens. After that was shown to be successful, the magnetic prostheses were implanted in two separate sessions, one for each eye, by Professor Geoff Rose and Mr David Verity at Moorfields Eye Hospital. The patient recovered quickly from both procedures, and reported that the oscillopsia improved, although he has a degree of double vision, a symptom which he had developed before the nystagmus.

Testing showed that his overall visual acuity was substantially improved, and there has been no negative impact on his functional range of movement. Over four years of follow-up reports, the patient's symptoms have remained stable and he has managed to return to paid employment and reports substantial improvement in daily activities such as reading and watching television.

"While the exact neural mechanisms causing nystagmus are still not fully understood, we have shown that it can still be corrected with a prosthesis, without needing to address the neural cause. What matters here is the movement of the eye, not how it is generated," said Professor Christopher Kennard (University of Oxford), who co-led the study.

The researchers caution that their prosthesis wouldn't be effective for everyone with nystagmus, as magnetic implants are not suitable for patients who require regular MRI scans, and further research needs to be done to understand in which patients the prosthesis would be most helpful. The researchers are currently recruiting for a larger study, led by Professor Rose at Moorfields Eye Hospital, and funded by the National Institute for Health Research (NIHR). The study benefits from a collaboration with the nystagmus patient support group, the Nystagmus Network.

###

The study benefited from funding from the NIHR's National Programme for New and Emerging Applications of Technology, the NIHR Biomedical Research Centres at UCLH, Moorfields Eye Hospital and Oxford, and Wellcome.

Media Contact

Chris Lane
[email protected]
44-020-767-99041
@uclnews

http://www.ucl.ac.uk

http://dx.doi.org/10.1016/j.ophtha.2017.05.028

############

Story Source: Materials provided by Scienmag

Share16Tweet8Share2ShareShareShare2

Related Posts

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

Drumming in Mongolian Gerbils: Context or Arousal?

September 1, 2025

Seasonal Brain Shrinkage in Shrews Caused by Water Loss, Not Cell Death

September 1, 2025

Lower IGF1 Levels in Preeclampsia Affect Trophoblasts

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.