• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UTMB researchers shed new light on a key player in brain development

Bioengineer by Bioengineer
June 21, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

GALVESTON, Texas – Researchers at The University of Texas Medical Branch at Galveston have shed light on how the developing brain ensures that connections between brain cells reach their intended destination but that they are also maintained during life-span.

The findings have been just published in the journal Science Signaling.

Like other networks, the brain contains regions that serve specific functions such as interpreting sensory information, controlling bodily movement or formation of memory, and so on. In order for regions to interact with one another to perform complex tasks, the brain has a web of interconnecting pathways.

The study from Krishna M. Bhat, UTMB professor in the department of neuroscience and cell biology, and his lab showed that a protein called Slit is required for maintaining the interconnecting pathways in the nervous system. Without continual guidance from Slit, the intended pathways – which are very important for proper communication between brain regions after birth – drift off course.

The study found that Slit keeps brain cells on their paths in partnership with receptor proteins called Robo. The study also revelealed that Slit-Robo signaling is controlled by an enzyme called Mummy. Mummy modifies Slit in such a way that it could be secreted outside the cell where it is made, and also maintains correct amounts and spatial distribution of Robo during early and late nervous system development.

"Although Slit-Robo signaling is intensely studied, the emphasis has always been on understanding the events controlling the beginning of the process of guiding developing brain circuits to their destinations," said Bhat. "Here, we show that Slit-Robo signaling is required not only at the intial stages of brain circuitry guidance but also later for maintaining those networks of circuits. This has implications for loss of cognition and other brain functions as we age or in many neuro-diseases."

The study was conducted using the fruitfly Drosophila, as the control of brain circuitry pathfinding mechanisms is remarkably similar to what happens during human development.

###

Other authors include UTMB's Mary Ann Manavalan, Vatsala Ruvini Jayasinghe and Rickinder Grewal.

Media Contact

Donna Ramirez
[email protected]
409-772-8791
@utmb_news

http://www.utmb.edu

http://www.utmb.edu/newsroom/article11561.aspx

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.