• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Clear view on stem cell development

Bioengineer by Bioengineer
June 21, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Tingying Peng / TUM/HMGU

Today, tracking the development of individual cells and spotting the associated factors under the microscope is nothing unusual. However, impairments like shadows or changes in the background complicate the interpretation of data. Now, researchers at the Technical University of Munich (TUM) and the Helmholtz Zentrum München have developed a software that corrects images to make hitherto hidden development steps visible.

When stem cells develop into specialized cells, this happens in multiple steps. But which regulatory proteins are active during the decisive branching on the development path? Using so-called time-lapse microscopy, researchers can observe individual cells at very high time resolutions and, using fluorescent labelling, they can recognize precisely which of these proteins appear when in the cell.

Once a stem cell has been identified, it can be closely observed over several days using cell-tracking software. Yet, this "surveillance work" often turns out to be difficult. "The imaging data is frequently marred by irregular brightness and faded backgrounds in the time-lapse," explains Dr. Carsten Marr, heading the workgroup Quantitative Single Cell Dynamics at the Institute of Computational Biology (ICB) of the Helmholtz Zentrum München. "This makes it difficult or impossible to detect proteins that are decisive when a cell opts for a specific development direction, so-called transcription factors."

Algorithms that filter out these kinds of artefacts exist, but they require either specifically prepared reference images, many images per dataset or complex manual adjustments. Furthermore, none of the existing methods correct alterations in the background over time, which hamper the quantification of individual cells.

Algorithm eliminates background changes

Now, Dr. Tingying Peng, member of Dr. Carsten Marr's group at the Helmholtz Zentrum München and Professor Nassir Navab, head of the Chair for Computer Aided Medical Procedures and Augmented Reality at TU Munich, present an algorithm that corrects these artefacts using only a few images per dataset.

The software is called "BaSiC" and is freely available. It is compatible with many image formats commonly used in bioimaging, including mosaics pieced together from numerous smaller images and used, for example, to render large tissue regions. "Contrary to other programs, however," explains Dr. Peng, "BaSiC can correct changes in the background of time-lapse videos. This makes it a valuable tool for stem cell researchers who want to detect the appearance of specific transcription factors early on."

Bringing significant details to light

How well the new image correction program improves the analysis of individual stem cell development steps the scientists demonstrated with time-lapse videos of blood stem cells. They recorded the videos to observe cells over a six-day time span. At a certain point during this observation period undifferentiated precursor cells choose between two possible tacks of development that lead to the formation of different mature blood cells.

In images corrected using BaSiC, the researchers could identify a substantial increase in the intensity of a specific transcription factor in one of the two cell lines, while the amount of his protein in the other cell line remained unchanged. Without the image correction, the difference was not ascertainable.

"Using BaSiC, we were able to make important decision factors visible that would otherwise have been drowned out by noise," says Nassir Navab. "The long-term goal of this research is to facilitate influencing the development of stem cells in a targeted manner, for example to cultivate new heart muscle cells for heat-attack patients. The novel possibilities for observation are bringing us a step closer to this goal."

###

The BaSiC image correction program resulted from a close collaboration between the Chair of Mathematical Modeling of Biological Systems and the Chair of Computer Aided Medical Procedures & Augmented Reality at the Technical University of Munich and the Institute of Computational Biology (ICB) of the Helmholtz Zentrum München. Also involved were the Department of Biochemistry and Biophysics at the University of California in San Francisco (USA), as well as the Department of Biosystems Science and Engineering (D-BSSSE) at ETH Zürich and the Chair of Computer Aided Medical Procedure at Johns Hopkins University in Baltimore (USA).

Media Contact

Dr. Andreas Battenberg
[email protected]
49-892-891-0510
@TU_Muenchen

http://www.tum.de

Original Source

https://www.tum.de/en/about-tum/news/press-releases/detail/article/33987/ http://dx.doi.org/10.1038/ncomms14836

############

Story Source: Materials provided by Scienmag

Share14Tweet8Share2ShareShareShare2

Related Posts

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

August 13, 2025
Mizzou Researchers Uncover New Insights into Immune Response to Influenza

Mizzou Researchers Uncover New Insights into Immune Response to Influenza

August 13, 2025

‘Essentiality’ Scan Uncovers Microbe’s Vital Survival Toolkit

August 13, 2025

First Gyrodactylus perccotti Found on Chinese Sleeper

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Fuel Cell Parameters with AI Techniques

DKMS John Hansen Research Grant 2026 Awards Nearly €1 Million to Advance Innovative Blood Cancer Therapies

Twisted Bilayer MOFs Unlock Tailored Moiré Patterns, Driving Breakthroughs in Twistronics and Quantum Materials

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.