• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New sensors could enable more affordable detection of pollution and diseases

Bioengineer by Bioengineer
June 21, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When it comes to testing for cancer, environmental pollution and food contaminants, traditional sensors can help. The challenges are that they often are bulky, expensive, non-intuitive and complicated. Now, one team reports in ACS Sensors that portable pressure-based detectors coupled with smartphone software could provide a simpler, more affordable alternative while still maintaining sensitivity.

Current disease and contamination sensors require expensive readout equipment or trained personnel. Yuehe Lin, Yong Tang and colleagues propose a new detection system based on pressure changes. For example, when a disease biomarker is present, it causes a chain reaction in the device that results in oxygen being released and pressure building. The pressure changes are measured by a portable barometer, and smartphone software provides an easy readout of the results.

To show the versatility of the pressure sensor, the team tested a variety of applications. Prototypes could detect carcinoembryonic antigen, a protein present in high levels in patients with colon or rectal cancer; ractopamine, which is an animal-feed additive banned in many countries; and thrombin, a cardiovascular disease marker. In addition, a mercury-ion sensor was developed for environmental pollution monitoring. The researchers say that because the results are immediately available with a smartphone, the method could enable real-time monitoring of environmental pollution, disease outbreaks and food safety.

###

The authors acknowledge funding from the National Key Development Program of China, the Technology Research Program of Guangzhou City, the Technology Research Program of Guangdong Province and the Guangdong Innovative and Entrepreneurial Research Team Program.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals, and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Alkanna Extract-Driven Synthesis of Ag-ZnO Nanoparticles

Alkanna Extract-Driven Synthesis of Ag-ZnO Nanoparticles

November 8, 2025
Whole Genome Sequencing Reveals Tuberculosis Resistance in Huzhou

Whole Genome Sequencing Reveals Tuberculosis Resistance in Huzhou

November 8, 2025

Unraveling Reproductive Control in Macrobrachium Post-Abalation

November 8, 2025

Brain Rhythm Disruption in Schizophrenia Model Mice

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Korean Medicine’s Approach to Asthma: A Survey

Alkanna Extract-Driven Synthesis of Ag-ZnO Nanoparticles

Hyperthermia Linked to Reduced Radiation Pneumonitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.