• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Villous tree model with active contractions for estimating blood flow conditions

Bioengineer by Bioengineer
June 20, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Perfusion in the human placenta is an important physiological phenomenon which shows the placental conditions. The magnitude of placental perfusion can be evaluated by 3D power Doppler and contrast-enhanced MR images, but the direction has been hardly indicated. The computational model of the villous tree developed in this study will help to indicate the direction and the mechanical properties of the villous tree.

The villous tree in the human placenta has the blood vessels for the fetal blood circulation while the maternal blood flows into the intervillous space, the surroundings of the villous tree. The stem villi, the main support of the villous tree, have contractile cells along the longitudinal axis of the branch, and contract. It has been speculated that that the contraction would contribute to the blood circulation in the placenta, but the displacement caused by the contraction has been hardly been predicted or measured.

The computational model developed in this study is composed of two parts: (1) stem villi, based on the size and branching pattern previously reported and (2) the surroundings of the stem villi, one continuum because the shape of the villi and the intervillous space are complicated. In the computation, it was assumed that the contraction indicated the axial direction of the branch in the stem villi, and the displacement caused by the contraction propagated in the surroundings of the stem villi.

The results in the computation showed that the displacement would be helpful for blood circulation in the placenta even if the mechanical properties of the surroundings were changed. Such robustness in the blood circulation agrees with previous reports.

If the mechanical properties modulated as the displacement in the computation agrees with the magnitude of the perfusion, the placental condition as well as the direction of the perfusion can be estimated.

###

For more information about the article, please visit https://benthamopen.com/FULLTEXT/TOBEJ-11-36

Reference: Kato Y. (2017). Villous Tree Model with Active Contractions for Estimating Blood Flow Conditions in the Human Placenta, The Open Biomedical Engineering Journal

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

http://dx.doi.org/10.2174/1874120701711010036

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.