• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery by NUS researchers improves understanding of cellular aging and cancer development

Bioengineer by Bioengineer
June 13, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: National University of Singapore

A team of researchers led by Dr Dennis Kappei, a Special Fellow from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS), has discovered the role of the protein ZBTB48 in regulating both telomeres and mitochondria, which are key players involved in cellular ageing. The results of the study will contribute to a better understanding of the human ageing process as well as cancer development.

The study, which was conducted in collaboration with researchers at the TU Dresden and the Institute of Molecular Biology Mainz, both in Germany, were published in the journal EMBO Reports in May 2017.

In vertebrates, telomeres act as protective caps located at the ends of chromosomes. Telomeres shorten every time a cell divides, and ultimately the loss of telomeres leads to cellular senescence, where cells cease to divide, and eventually, cell death. Cancer cells are known to bypass this limit by activating mechanisms that keep their telomeres long, thereby allowing for their unlimited proliferative potential. Previous studies have linked telomeres to the function of mitochondria (essential cell organelles that act as cellular power plants) and vice versa.

ZBTB48 has recently been found to directly bind to telomeres that are abnormally long, and to limit them from growing further. It is only the fourth protein that is known to bind to telomeres. The first two proteins, TRF1 and TRF2, had been discovered about two decades ago, while previous research work by Dr Kappei had discovered the third, HOT1, only in 2013.

In this study, the research team found that ZBTB48 not only prevents further telomere lengthening in cells that already have abnormally long telomeres, but more generally in cancer cells regardless of their telomere length. In addition, the team also uncovered that ZBTB48 can activate the production of a specific set of genes, which include a mitochondrial gene called MFTP1.

"The findings from our study validated recent findings on the telomere binding role of ZBTB48. Our team's independent discovery of the ZBTB48 protein is an extension to these recent findings, as we found evidence indicating that cancer cells, in general, are regulated by ZBTB48. It potentially also suggests applications for the human ageing process even at old age when telomere length has already decreased," said Dr Grishma Rane, Research Fellow at CSI Singapore and co-first author of the study.

Moving forward, the team is looking deeper into the role of the ZBTB48 protein in both cancer development and ageing. Dr Kappei said, "We are now actively pursuing the exact molecular mechanism through which ZBTB48 controls telomere length, and further looking into ZBTB48's role in various cancers, such as neuroblastoma, in which the gene is frequently deleted. With the discovery of ZBTB48's novel linkage between telomeres and mitochondria, which both have key roles in cellular ageing, we will also be studying whether this interplay contributes to telomere maintenance."

###

The research was supported by the National Medical Research Council of Singapore, the National Research Foundation Singapore and the Singapore Ministry of Education.

Media Contact

Goh Yu Chong
[email protected]
65-660-11653
@NUSingapore

http://www.nus.edu.sg/

Related Journal Article

http://dx.doi.org/10.15252/embr.201744095

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

November 13, 2025

Uncovering Missing Heritability in Human Traits

November 13, 2025

Single-Dose Malaria Treatment Combining Four Existing Drugs Matches Multi-Day Regimen in African Clinical Trial

November 13, 2025

Texas A&M Scientists Harness AI to Uncover Genetic ‘Time Capsule’ Unique to Each Species

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Polyherbal Remedies Alleviate CCl4-Testicular Toxicity

Optimizing Melanin Production from Endophytic Pseudomonas

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.