• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mussels add muscle to biocompatible fibers

Bioengineer by Bioengineer
June 9, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Hartgerink Research Group/Rice University

Rice University chemists can thank the mussel for putting the muscle into their new macroscale scaffold fibers.

The Rice lab of chemist Jeffrey Hartgerink had already figured out how to make biocompatible nanofibers out of synthetic peptides. In new work, the lab is using an amino acid found in the sticky feet of mussels to make those fibers line up into strong hydrogel strings.

Hartgerink and Rice graduate student I-Che Li introduced their room-temperature method this month in an open-access paper in the Journal of the American Chemical Society.

The hydrogel strings can be picked up and moved with tweezers, and Li said he expects they will help labs gain better control over the growth of cell cultures.

"Usually when cells grow on a surface, they spread randomly," he said. "There are a lot of biomaterials we want to grow in a specific direction. With the hydrogel scaffold aligned, we can expect cells to grow the way we want them to. One example would be neuron cells, which we want to grow head-to-tail to aid nerve regeneration.

"Basically, this could allow us to direct cell growth from here to there," he said. "That's why this material is so exciting."

In previous research Hartgerink's lab had developed synthetic hydrogels that could be injected into the body to serve as scaffolds for tissue growth. The hydrogels contained hydrophobic peptides that self-assembled into fibers about 6 nanometers wide and up to several microns long. However, because the fibers did not interact with one other, they generally appeared in microscope images as a tangled mass.

Experiments showed the fibers could be coaxed into alignment with the application of shear forces, in the same way that playing cards are aligned during shuffling by pushing on both the top and bottom of the deck.

Hartgerink and Li decided to try pushing the fibers through a needle to force them into alignment, a process that would be easier if the material was water soluble. So they added a chain of amino acids known as DOPA to the sides of the fibers to allow them to remain water-soluble in the syringe, Li said.

DOPA — short for 3,4-dihydroxyphenylalanine — is the compound that lets mussels stick to just about anything. Hartgerink and Li found that the combination of DOPA and shear stress from passing through the needle prompted the fibers to form visible, rope-like bundles.

They also found that DOPA promoted chemical cross-linking reactions that helped the bundles hold their shape. "DOPA is really sensitive to oxidizing agents," Li said. "Even exposing DOPA to air oxidizes it, and that aids in cross-linking the fibers."

As a bonus, the aligned fibers also proved to have a curious and useful optical property called "uniform birefringence," or double-refraction. Li said this could allow researchers to use polarized light to see exactly where the aligned fibers are, even if they're covered by cells.

"This will be an important technique for us to make sure of the long-range order of fiber alignment when we are testing directed cell growth," he said.

The researchers expect the aligned fibers can be used for macroscale medical applications but with nanoscale control over the structures.

"Self-assembly is basically the ability of a molecule to make ordered structure from chaos, and what I-Che has done is push this organization to a new level with his aligned strings," said Hartgerink, a professor of chemistry and of bioengineering. "With this material, we are excited to see if we can impose this organization onto the growth of cells that interact with it."

###

The Robert A. Welch Foundation and the National Institutes of Health supported the research.

Read the paper at http://pubs.acs.org/doi/abs/10.1021/jacs.7b04655

This news release can be found online at http://news.rice.edu/2017/06/08/mussels-add-muscle-to-biocompatible-fibers/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Hartgerink Research Group: http://www.ruf.rice.edu/~jdh/

Hydrogels deliver on blood-vessel growth: http://news.rice.edu/2015/01/20/hydrogels-deliver-on-blood-vessel-growth-2/

Smart scaffolding aims to rebuild tissue from the inside:

http://news.rice.edu/2012/11/12/smart-scaffolding-aims-to-rebuild-tissue-from-the-inside-2/

Rice Department of Chemistry: https://chemistry.rice.edu

Rice Department of Bioengineering: http://bioe.rice.edu

BioScience Research Collaborative: http://www.brc.rice.edu/home/

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
[email protected]
713-348-6327
@RiceUNews

http://news.rice.edu

Related Journal Article

http://dx.doi.org/10.1021/jacs.7b04655

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

November 6, 2025
blank

USF Health Researcher Leads International Team to Secure Multi-Million Dollar Research Grant

November 6, 2025

Exploring Sex Differences in Brain Stimulation Effects

November 6, 2025

Meta-Analysis Confirms Acetaminophen Safe for Use During Pregnancy

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Profiling Reveals Prostate Cancer Stromal Vulnerabilities

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.