• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Removal of aging cells could extend human life

Bioengineer by Bioengineer
June 9, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNIST

A recent study, led by an international team of researchers confirms that targeted removal of senescent cells (SnCs), accumulated in many vertebrate tissues as we age, contribute significantly in delaying the onset of age-related pathologies.

This breakthrough research has been led by Dr. Chaekyu Kim of the Johns Hopkins University School of Medicine, who is now at UNIST, and Dr. Ok Hee Jeon of the Johns Hopkins University School of Medicine in collaborations with the Mayo Clinic College of Medicine, the Buck Institute for Research on Aging, the University Medical Center Groningen, Unity Biotechnology, Inc., and the University of California, Berkeley.

In the study, the research team presented a novel pharmacologic candidate that alleviates age-related degenerative joint conditions, such as osteoarthritis (OA) by selectively destroying SnCs. Their findings, published April 24th in Nature Medicine (Impact Factor: 30.357), suggest that the selective removal of old cells from joints could reduce the development of post-traumatic OA and allow new cartilage to grow and repair joints.

Senescent cells (SnCs) accumulate with age in many vertebrate tissues and are present at sites of age-related pathlogy. Although these cells play an essential role in wound healing and injury repair, they may also promote cancer incidence in tissues. For instance, in articular joints, such as the knee and cartilage tissue, SnCs often are not cleared from the area after injury, thereby contributing to OA development.

To test the idea that SnCs might play a causative role in OA, the research team took both younger and older mice and cut their anterior cruciate ligaments (ACL) to minic injury. They, then, administered injections of an experimental drug, named UBX0101 to selectively remove SnCs after anterior cruciate ligament transection (ACLT) surgery.

Preclinical studies in mice and human cells suggested that the removal of SnCs significantly reduced the development of post-traumatic OA and related pain and created a prochondrogenic environment for new cartilage to grow and repair joints. Indeed, the research team reported that aged mice did not exhibit signs of cartilage regeneration after treatment with UBX0101 injections,

According to the research team, the relevance of their findings to human disease was validated using chondrocytes isolated from arthritic patients. The research team notes that their findings provide new insights into therapies targeting SnCs for the treatment of trauma and age-related degenerative joint disease.

Prior to this study, Johns Hopkins Technology Ventures (JHTV) granted UNITY Biotechnology Inc. the right to use the intellectual property around the senescent cell technology. UNITY is a company aiming to develop therapeutics that address age-related diseases. Last October, the company announced $116 million in Series B funding from some of the big names in venture capital, including Amazon CEO Jeff Bezo's venture fund Bezos Expeditions, Mayo Clinic Ventures, Venrock, and ARCH Venture Partners. UNITY has completed a rigorous screening and preclinical testing process of candidate drugs, discovered in this study, and is launching a new clinical trial to assess its first drug, for patients with osteoarthritis of the knee this year.

###

This study has been also conducted collaboratively by twelve other researchers, including Dr. Jennifer Elisseeff, Director of the Translational Tissue Engineering Center and Morton Goldberg Professor of Ophthalmology at the Johns Hopkins Wilmer Eye Institute, Professor Jan M. Van Deursen's team of the Mayo Clinic College of Medicine, and Professor Judith Campisi's team of the Buck Institute for Research on Aging.

Journal Reference

Ok Hee Jeon et al., "Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment," Nature Medicine, (2017).

Media Contact

JooHyeon Heo
[email protected]
82-522-171-223

home

Original Source

http://news.unist.ac.kr/removal-of-aging-cells-could-extend-human-life/ http://dx.doi.org/10.1038/nm.4324

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025

Woodpeckers Grunt Like Tennis Stars While Drilling, Scientists Discover

November 6, 2025

Estrogen Receptor Protects Hippocampal Neurons from Amyloid β

November 6, 2025

Mitochondrial Genomes Reveal Invasive Scale Insect Evolution

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

Unraveling μ-Opioid Receptor Signaling Plasticity

Enhancing Nursing Students’ Pressure Injury Assessment Skills

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.