• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Autonomous machines edge towards greater independence

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cars that can drive autonomously have recently made headlines. In the near future, machines that can learn autonomously will become increasingly present in our lives. The secret to efficient learning for these machines is to define an iterative process to map out the evolution of how key aspects of these systems change over time. In a study published in EPJ B, Agustín Bilen and Pablo Kaluza from Universidad Nacional de Cuyo, Mendoza, Argentina show that these smart systems can evolve autonomously to perform a specific and well-defined task over time. Applications range from nanotechnology to biological systems, such as biological signal transduction networks, genetic regulatory networks with adaptive responses, or genetic networks in which the expression level of certain genes in a network oscillates from one state to another.

These autonomous systems do not need an external tutor. Nor do they report to a central unit designed to modify what the system must learn depending on their performance. To increase their autonomy, the authors have built in delayed dynamics and a feedback loop with the system's performance. The delayed dynamics provide information on the history of the system, thus presenting the past relationships between its structure and performance. In turn, the feedback loop offers information on the system's actual performance in terms of how close it is to the desired task.

The researchers first successfully applied their approach to a neural network responsible for classifying several patterns, which yielded 66% robustness. These insights can be applied e.g. in analogue electronics, where a piece of hardware can learn a task autonomously without a central processing unit or external control. The team also tested their solution on a system of phase oscillators, which are interesting because the populations of such oscillators display some remarkable synchronisation traits. In such cases, autonomous learning helps to avoid the inherent fluctuations of error normally found in such systems.

###

Reference:

Agustín M. Bilen and Pablo Kaluza (2017), Autonomous learning by simple dynamical systems with a discrete-time formulation, Eur. Phys. J. B 90:94, DOI 10.1140/epjb/e2017-70714-7

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

http://www.springer.com/gb/about-springer/media/research-news/all-english-research-news/autonomous-machines-edge-towards-greater-independence/12343530

Related Journal Article

http://dx.doi.org/10.1140/epjb/e2017-70714-7

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.