• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Engineering a new cancer detection tool

Bioengineer by Bioengineer
June 7, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Studying the food poisoning bacteria E. coli may have led scientists to discover a new and improved tool to detect cancer.

In a collaborative research project, scientists from Griffith University's Institute for Glycomics, the University of Adelaide and University of Queensland have detailed their findings in a new paper published in Scientific Reports.

Professor Michael Jennings from the Institute for Glycomics said the E. coli produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells (Neu5Gc) which is not usually produced by healthy cells.

"The structure that the toxin recognises is known to be a tumour antigen, that is, a substance produced by tumour cells which are recognised markers for cancer detection and diagnosis."

The research team then took the naturally-occurring toxin and engineered it to change the protein make-up so it became entirely specific to detecting only this singular tumour antigen structure.

"The real innovation here is that we have converted something that was discovered in an infectious disease research program into food poisoning and were able to utilise it as a tool for potentially detecting tumour antigens," Professor Jennings said.

This tumour antigen is made by a wide range of cancers including breast and ovarian cancer.

"There's a saying in science that chance favours the prepared mind and because at the Institute we work with both infectious diseases and cancer research there was a cross fertilization of ideas and opportunity."

"We were very surprised at how well the engineering of this protein worked and we were able to remove the binding characteristics that were useless in a diagnostic sense and re-engineer it to make it totally specific for the tumour antigen target," he said.

The Neu5Gc is expressed at very high levels on cancer cells but not normal cells so the discovery of Neu5Gc indicates the patient may be suffering cancer.

Humans are unable to make Neu5Gc but is absorbed into the human body through dietary intake of red meat and dairy.

Professor Jennings said more research has to be done but the important thing is this new tool has the potential to detect far more sensitively, a wide range of possible cancers.

###

Media Contact

Ben Dobson
[email protected]
043-565-1602
@Griffith_Uni

http://www.griffith.edu.au

http://dx.doi.org/10.1038/s41598-017-01522-9

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.