• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SLU researcher finds cause and possible relief of cancer bone pain

Bioengineer by Bioengineer
June 7, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ellen Hutti for Saint Louis University

ST. LOUIS — In a paper published in the journal Pain, Saint Louis University researcher Daniela Salvemini, Ph.D., reports discovering a key molecular pathway that drives cancer-related bone pain while providing a potential solution with a drug that already is on the market.

Salvemini, who is a professor of pharmacology and physiology at SLU, studies many sorts of pain, including chronic pain, cancer pain and chemotherapy-induced pain, in search of new treatments.

"Pain is a huge problem– for the patient, the caregiver, the family, the doctors," Salvemini said. "We have limited options.

"So, I have a sense of urgency – I don't want people to be in pain– and therefore I have made it my mission to discover drugs that can effectively abrogate pain."

Metastatic bone pain is the single most common form of cancer pain. Cancer-induced bone pain (CIBP) is reported by 30 to 50 percent of all cancer patients and by 75 to 90 percent of late-stage patients. CIBP is driven by a combination of tumor-associated skeletal, inflammatory and neuropathic mechanisms.

Innovations in the treatment of bone cancer pain primarily have focused on addressing bone loss and vulnerability to painful skeletal-related events. However, no therapies currently target the neuropathic mechanisms of CIBP.

In addition, pain often continues even for patients whose cancer enters remission, increasing the need for effective therapies rather than relying only on palliative care.

"Better understanding of cancer-induced bone pain is critical to the development of such strategies," Salvemini said.

In previous work, Salvemini discovered pain pathways – the molecular series of events that lead to pain – that helped researchers understand how pain occurs. One molecule that the pathways are dependent upon is called S1PR1 (sphingosine 1-phosphate receptor subtype 1). By modulating this molecule, scientists were able to block and reverse pain. This finding is particularly encouraging because a drug that modulates S1PR1 already is on the market.

Salvemini's current paper reports an experiment her team conducted studying an animal model of breast cancer that has metastasized to the femur. The researchers observed in the spinal cord changes to key pathways suggesting that increases in sphingosine 1-phosphate are a key component of developing pain and that blocking this signal limits pain.

The research team found that targeting S1PR1 mitigates bone pain and neuroinflammation, and identifies S1PR1 as a potential therapeutic target alone or as a secondary therapy to address cancer-induced bone pain.

"Thanks to an exceptional team that included the expertise of Dr. Todd Vanderah, known for his seminal work in pain, and Dr. Sarah Spiegel, known for her work in sphingolipid biology and the discovery of S1P, we were able to make this significant advance toward providing pain relief for those who are suffering," Salvemini said.

Other researchers on the study include Shaness A. Grenald, Timothy M. Doyle, Hong Zhang, Lauren M. Slosky, Zhoumou Chen and Tally M. Largent-Milnes.

This study was funded by grants from the Leukemia and Lymphoma Society (6241-13) with additional support from the Saint Louis University Cancer Center and by NIH/NCI grant RO1CA142115 and NIH/NIGMS grant R01GM043880.

Daniela Salvemini, Ph.D.

Salvemini's notable career includes studying with a Nobel Laureate, discovering peroxynitrite, a key molecule in the development of pain and inflammation, and uncovering some of the reasons why certain chemotherapy drugs can cause patients extreme and lasting pain. Salvemini has been honored by the Academy of Science of St. Louis for her contribution to our understanding of pain with the Fellows Award, which recognizes a distinguished individual for outstanding achievement in science.

"Dr. Salvemini has contributed more to the eventual control of pain and opioid-induced tolerance than anyone else currently working in the field," the Academy notes.

###

Saint Louis University School of Medicine

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious diseases.

Media Contact

Carrie Bebermeyer
[email protected]
314-977-8015
@SLU_Official

http://www.slu.edu

Original Source

https://www.slu.edu/news/2017/june/cancer-bone-pain-research.php http://dx.doi.org/10.1097/j.pain.0000000000000965

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

“Bioavailability of Umbelliferone: Metabolism & Extraction Insights”

September 11, 2025

Inner Cell Mass and Blastulation Impact Pregnancy Success

September 11, 2025

New Research Reveals Indigenous Amazon Forests Help Curb Spread of 27 Diseases Across Eight Countries

September 11, 2025

Indigenous Amazon Territories Promote Human Health, Study Finds

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“Bioavailability of Umbelliferone: Metabolism & Extraction Insights”

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

Breakthrough Nano-Switch Enables Precise Control of Chargeless Quantum Information Flow

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.