• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Stem cells may be the key to staying strong in old age

Bioengineer by Bioengineer
June 6, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Rochester Medical Center researchers have discovered that loss of muscle stem cells is the main driving force behind muscle decline in old age in mice. Their finding challenges the current prevailing theory that age-related muscle decline is primarily caused by loss of motor neurons. Study authors hope to develop a drug or therapy that can slow muscle stem cell loss and muscle decline in the future.

As early as your mid 30's, the size and strength of your muscles begins to decline. The changes are subtle to start – activities that once came easily are not so easy now – but by your 70's or 80's, this decline can leave you frail and reliant on others even for simple daily tasks. While the speed of decline varies from person to person and may be slowed by diet and exercise, virtually no one completely escapes the decline.

"Even an elite trained athlete, who has high absolute muscle strength will still experience a decline with age," said study author Joe Chakkalakal, Ph.D., assistant professor of Orthopaedics in the Center for Musculoskeletal Research at URMC.

Chakkalakal has been investigating exactly how muscle loss occurs in aging mice in order to figure out how humans might avoid it.

In a study, published today in eLife, Chakkalakal and lead author Wenxuan Liu, Ph.D., recent graduate of the Biomedical Genetics Department at URMC, define a new role for stem cells in the life long maintenance of muscle. All adults have a pool of stem cells that reside in muscle tissue that respond to exercise or injury – pumping out new muscle cells to repair or grow your muscles. While it was already known that muscle stem cells die off as you age, Chakkalakal's study is the first to suggest that this is the main driving factor behind muscle loss.

To better understand the role of stem cells in age-related muscle decline, Chakkalakal and his team depleted muscle stem cells in mice without disrupting motor neurons, nerve cells that control muscle. The loss of stem cells sped up muscle decline in the mice, starting in middle, rather than old age. Mice that were genetically altered to prevent muscle stem cell loss maintained healthier muscles at older ages than age-matched control mice.

At the same time, Chakkalakal and his team did not find evidence to support motor neuron loss in aging mice. Very few muscle fibers had completely lost connection with their corresponding motor neurons, which questions the long-held and popular "Denervation/Re-innervation" theory. According to the theory, age-related muscle decline is primarily driven by motor neurons dying or losing connection with the muscle, which then causes the muscle cells to atrophy and die.

"I think we've shown a formal demonstration that even for aging sedentary individuals, your stem cells are doing something," said Chakkalakal. "They do play a role in the normal maintenance of your muscle throughout life."

Chakkalakal is building on this discovery and searching for a drug target that will allow him to maintain the muscle stem cell pool and stave off muscle degeneration as long as possible and he hopes this discovery will help move the field forward.

###

Media Contact

Susanne Pritchard Pallo
[email protected]
585-275-1171
@UR_Med

http://www.urmc.rochester.edu

https://www.urmc.rochester.edu/news/story/4788/stem-cells-may-be-the-key-to-staying-strong-in-old-age.aspx

Related Journal Article

http://dx.doi.org/10.7554/eLife.26464

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Novel Technique for Lateral Femoral Cutaneous Nerve Ablation

September 24, 2025

mHealth Lifestyle Interventions: Effective Weight Loss Strategies

September 24, 2025

Validating a Prolonged Pain Scale for Brazilian Neonates

September 24, 2025

Blocking NNMT in Fibroblasts Reactivates T Cells

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D Electron Diffraction Reveals Chiral Crystal Structures

Unraveling the Future: Advances in Solar Cell Material Development

5G Deployment: Faster Speeds Not Always Guaranteed Compared to 4G

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.