• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Injectable solution may provide weeks of glucose control

Bioengineer by Bioengineer
June 5, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ashutosh Chilkoti, Duke University

DURHAM, N.C. — Biomedical engineers at Duke University have created a technology that might provide weeks of glucose control for diabetes with a single injection, which would be a dramatic improvement over current therapies. In primates, the treatment has been shown to last for weeks, rather than days.

By creating a controlled-release mechanism for a drug and optimizing its circulation time in the body, this new biopolymer injection has the potential to replace daily or weekly insulin shots with a once-a-month or twice-a-month treatments for type 2 diabetes.

The new therapy is described June 5 in Nature Biomedical Engineering.

Many current treatments for type 2 diabetes use a signaling molecule called glucagon-like peptide-1 (GLP1) to cause the pancreas to release insulin to control blood sugar. However, this peptide has a short half-life and is cleared from the body quickly.

To make treatments last longer, researchers have previously fused GLP1 with synthetic microspheres and biomolecules like antibodies, making them active for two to three days in mice and up to a week in humans. Despite this improvement, many of these treatments don't include a mechanism to control the rate of the peptide's release, causing the treatment's effectiveness to plateau after prolonged use.

Now researchers at Duke have created a technology that fuses GLP1 to a heat-sensitive elastin-like polypeptide (ELP) in a solution that can be injected into the skin through a standard needle. Once injected, the solution reacts with body heat to form a biodegradable gel-like "depot" that slowly releases the drug as it dissolves. In animal experiments, the resulting therapy provided glucose control up to three times longer than treatments currently on the market.

"Although we've pursued this method in the past, Kelli Luginbuhl, a grad student in my lab, systematically worked to vary the design of the delivery biopolymer at the molecular level and found a sweet spot that maximized the duration of the drug's delivery from a single injection," says Ashutosh Chilkoti, chair of the Department of Biomedical Engineering (BME) at Duke University and a senior author of the paper. "By doing so, we managed to triple the duration of this short-acting drug for type 2 diabetes, outperforming other competing designs."

Building upon their previous work with the drug and delivery system, researchers in the Chilkoti lab optimized their solution to regulate glucose levels in mice for 10 days after a single injection, up from the previous standard of 2-3 days.

In further tests, the team found that the optimized formulation improved glucose control in rhesus monkeys for more than 14 days after a single injection, while also releasing the drug at a constant rate for the duration of the trial.

"What's exciting about this work was our ability to demonstrate that the drug could last over two weeks in non-human primates," says Kelli Luginbuhl, a PhD student in the Chilkoti lab and co-author of the study. "Because our metabolism is slower than monkeys and mice, the treatment should theoretically last even longer in humans, so our hope is that this will be the first bi-weekly or once-a-month formulation for people with type 2 diabetes."

Currently, the longest-acting glucose control treatment on the market, dulaglutide, requires a once-weekly injection, while standard insulin therapies often have to be injected twice or more every day.

Despite a variety of treatment options, managing type 2 diabetes still poses a problem. Patients don't always reach their glycemic targets, and adherence to a treatment plan that relies on frequent, meal-specific dosing leaves room for human error. By limiting the number of injections a person will need to control their glucose levels, the researchers hope this new tool will improve treatment options for the disease.

The researchers now plan to study the immune response to repeated injections and test the material with other animal models. Chilkoti and Luginbuhl are also considering additional applications for the controlled-release system, such as delivering pain medication.

Chilkoti also said that because the drug is synthesized inside E. coli bacterial cultures instead of mammalian cells, it is cheaper and faster to produce, making it a potential target for use in developing countries once it's commercialized.

###

The research was funded by the National Institutes of Health (R01-DK091789). Chilkoti is a scientific advisor for PhaseBio Pharmaceuticals, which has licensed this technology from Duke.

CITATION: "An Injectable Depot of Glucagon-Like Peptide-1 Fused to a Thermosensitive Polypeptide With Zero-Order Release Kinetics Provides One Week of Glucose Control," Kelli M Luginbuhl, Jeffrey L Schaal, Bret Umstead, Eric Mastria, Xinghai Li, Samagya Banskota, Susan Arnold, Mark Feinglos, David D'Alessio, Ashutosh Chilkoti. Nature Biomedical Engineering, June 5, 2017. DOI: 10.1038/s41551-017-0078

Media Contact

Michaela Kane
[email protected]
919-660-5155
@DukeU

http://www.duke.edu

Related Journal Article

http://dx.doi.org/10.1038/s41551-017-0078

############

Story Source: Materials provided by Scienmag

Share20Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Agentic AI in SMMEs: A Bibliometric Study

Enhancing Nursing Curriculum with Spirituality and Inclusion

Managing Acute Pain and Delirium in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.