• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Meet the most nimble-fingered robot ever built

Bioengineer by Bioengineer
June 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Adriel Olmos, CITRIS Media

Grabbing the awkwardly shaped items that people pick up in their day-to-day lives is a slippery task for robots. Irregularly shaped items such as shoes, spray bottles, open boxes, even rubber duckies are easy for people to grab and pick up, but robots struggle with knowing where to apply a grip. In a significant step toward overcoming this problem, roboticists at UC Berkeley have a built a robot that can pick up and move unfamiliar, real-world objects with a 99 percent success rate.

Berkeley professor Ken Goldberg, postdoctoral researcher Jeff Mahler and the Laboratory for Automation Science and Engineering (AUTOLAB) created the robot, called DexNet 2.0. DexNet 2.0's high grasping success rate means that this technology could soon be applied in industry, with the potential to revolutionize manufacturing and the supply chain.

DexNet 2.0 gained its highly accurate dexterity through a process called deep learning. The researchers built a vast database of three-dimensional shapes — 6.7 million data points in total — that a neural network uses to learn grasps that will pick up and move objects with irregular shapes. The neural network was then connected to a 3D sensor and a robotic arm. When an object is placed in front of DexNet 2.0, it quickly studies the shape and selects a grasp that will successfully pick up and move the object 99 percent of the time. DexNet 2.0 is also three times faster than its previous version.

DexNet 2.0 was featured as the cover story of the latest issues of MIT Technology Review, which called DexNet 2.0 "the most nimble-fingered robot yet." The complete paper will be published in July.

###

Media Contact

Brett Israel
[email protected]
510-643-7741
@UCBerkeleyNews

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.