• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Yale chemists forge a new path in the search for antibiotics

Bioengineer by Bioengineer
June 1, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael S. Helfenbein

New Haven, Conn. – Yale University scientists have developed a novel chemical process that may lead to the creation of a new class of antibiotics.

The discovery comes at a time when more types of bacteria are becoming resistant to existing antibiotics, increasing the occurrence of lethal infections. The ability to create new antibiotics would have significant ramifications for medical treatment and public health, said the researchers.

"This is one way to focus our talents as synthetic chemists in a direction that can immediately help patients," said Seth Herzon, a chemistry professor at Yale and member of the Yale Cancer Center. Herzon is principal investigator of a new study published June 1 in the journal Science.

Yale postdoctoral fellow Stephen Murphy and Yale graduate student Mingshuo Zeng are co-authors of the study. Both are members of the Herzon Lab.

The new process makes it possible to create molecules related to the natural product pleuromutilin from simple commercial chemicals in the laboratory. Pleuromutilin is produced by a fungus and was found to have useful antibacterial properties in the early 1950s. Since then, scientists in academia and the pharmaceutical industry have created thousands of pleuromutilin derivatives by a process known as semisynthesis, which involves chemically modifying pleuromutilin itself. However, a large proportion of these derivatives only vary at a single position in the molecule. A practical full synthesis, which would make a wealth of additional antibiotics possible, has remained elusive.

Herzon first attempted to find a solution in 2008. "We worked on this project for a few years when I started at Yale, but didn't record much success," Herzon said. "The pharmaceutical industry has historically been the driving force behind antibiotics development. However, antibiotics are essentially at the bottom of the list in terms of investment return. Consequently, most major pharmaceuticals have walked away from this area."

This has led to a dearth of new drugs to combat resistance, Herzon added. "As the anti-bacterial crisis kept getting worse, we decided we had to pick this back up and conceive an entirely different approach," he said.

Herzon and his colleagues discovered they could prepare an isomer of pleuromutilin — a compound that has the same connectivity, but with a different arrangement of atoms — and rearrange it in the final steps of the synthesis to pleuromutilin. The discovery allowed the group to vault past some of the previous roadblocks and achieve the full synthesis of pleuromutilin. Moreover, these isomers have better antibacterial properties than pleuromutilin itself, opening the door to the preparation of improved compounds.

"Making pleuromutilin is great, but we are more interested in the non-natural compounds we can access through synthesis. We're continuing to refine the synthesis, and the sky is the limit now, in terms of the modifications we can make," Herzon explained. "We're going to start testing compounds immediately. If all goes well we ultimately hope to move our compounds into clinical trials to treat drug-resistant infections."

###

The National Institutes of Health, the National Sciences and Engineering Research Council of Canada, and Yale University provided financial support for the research.

Media Contact

Jim Shelton
[email protected]
203-432-3881
@yale

http://www.yale.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Validating Schema Modes for Eating Disorders and Personality

November 12, 2025

Impact of Transitional Care on Hospital Outcomes Explained

November 12, 2025

Late-Onset Ovarian Hyperstimulation Risk in Older Women

November 12, 2025

Revolutionary Antibody Therapies Transform Disease Treatment

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neurological Impacts of COVID and MIS-C in Children

Validating Schema Modes for Eating Disorders and Personality

Sex-Dependent Meat Quality in Xiaoxiang Chickens Uncovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.