• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Artificial transpiration for solar water purification

Bioengineer by Bioengineer
June 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©Science China Press

Recently, solar steam and vapor generation is attracting a lot of attention with promising prospect in desalination, sterilization and chemical purification. Tremendous progress has been achieved as absorber designs (PNAS, 110, 11677-11681 (2013), Nature Comm. 6, 10103, (2015), Nature Photonics, 10, 393-398, (2016)) and thermal management (Nature Comm. 5, 4449, (2014), Nature Energy 1, 16133 (2016), PNAS, 113, 13953, (2016)). However, in all the previous designs, because of the minimized optical loss and heat conduction loss, losses related to convection and conduction start to dominant. Therefore, it becomes critical to simultaneous minimize the losses related to radiation, convection and conduction simultaneously in order to achieve optimum solar steam performance and enable widespread applications.

In research reported in the National Science Review (NSR), Zhu group at Nanjing University, China has provided a new concept "artificial transpiration" with a graphene oxide based 3D hollow cone structure (Fig. 1). In this unique 3D artificial transpiration device, 1D water path was used to obtain efficient water supply and suppressed conduction loss at the same time. The radiation and convection losses were also minimized by lowering absorber temperature due to its increased evaporation surface area and carefully designed morphology. As a result, this device enable over 85% solar vapor efficiency under one sun irradiation without external thermal insulation and optical supporting systems.

Another feature in this 3D artificial transpiration device is the ability to collect more sunlight throughout the day, compared with a 2D flat horizontal device. In contrast to the fixed, simulated sun light used in the lab, the sun is constantly changing its position in the sky. Furthermore, large portion of the sunlight (10-50%) is diffusive, arriving to the receiver from all directions. The results show that 3D absorption structure can absorb more light (about ~24%) than 2D devices which is beneficial to real world applications.

It is also demonstrated that the artificial transpiration device can enable effective water treatment through two pathways, producing clean water condensed from vapor and recycling heavy metals. The extracted water from the condensed vapor is pure enough to meet WHO drinking water standards, even starting with waste water containing high concentrations of Cu2+, Cd2+, Pb2+ and Zn2+ (5000 mg/L, 5000 times higher than WHO drinking water standards). Meanwhile, the heavy metals as Au, Cu can be recovered.

Therefore, this artificial transpiration device provide a complementary approach for efficient, effective and portable solar water treatment.

###

See the article:

Xiuqiang Li, Renxing Lin, George Ni, Ning Xu, Xiaozhen Hu, Bin Zhu, Guangxin Lv, Jinlei Li, Shining Zhu, Jia Zhu

Three-dimensional artificial transpiration for efficient solar waste water treatment
Natl Sci Rev 2017, DOI: 10.1093/nsr/nwx051. https://doi.org/10.1093/nsr/nwx051

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact

Jia Zhu
[email protected]

http://zh.scichina.com/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Reassessing AMH’s Impact in DHEA PCOS Research

November 5, 2025

Food Focus in Binge Eating: Training Limitations Revealed

November 5, 2025

Double Disadvantage: The Impact is Greater Than Twice as Severe

November 5, 2025

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reassessing AMH’s Impact in DHEA PCOS Research

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.