• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Vegetables rotting? Check bacteria conversation

Bioengineer by Bioengineer
May 30, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rita Valente, IGC.

Bacteria "conversation" may be an early trigger for plant pathogens virulence, show scientists from Instituto Gulbenkian de Ciencia (IGC, Portugal). In a study published now in the open access journal mBio*, the research team led by Karina Xavier discovered that the virulence of pathogenic bacteria is precipitated in the presence of other pathogenic species that release chemical signals to the environment.

Karina Xavier's laboratory has been investigating how bacteria "talk" to each other in order to adjust their behaviour to environmental changes or presence of other species. "Bacteria use a 'language' made of small chemical molecules. When present in high numbers, bacteria start releasing these molecules, which will then be sensed by other bacteria, either from the same or different species. These molecules work as signals triggering bacterial behaviours that are only productive when bacteria are working together as a group boosting their virulence, for instance", explains Karina Xavier.

In this study, the IGC team focused on Pectobacterium wasabiae, a bacteria species included in an important group of plant pathogens. The virulence of these pathogens is characterised by the production of enzymes that degrade the cell wall of cells rooting plant tissue. The researchers were interested in understanding how this bacterium integrates different signals to regulate its virulence.

Using a genetic approach that enabled them to inhibit genes involved in the mechanism that induce virulence, the research team could observe what happened to the behaviour of this species. Typically, Pectobacterium wasabiae needs to be at a high density to produce the chemical molecules that will activate their virulence response. But now, the IGC team discovered that its virulence response could be triggered earlier, even at low densities, if these bacteria eavesdrop on signals released by other pathogenic species present in the environment.

Karina Xavier explains: "The molecules produced by different bacteria species in order to communicate to each other and to help them sense the status of their surroundings are the key players in the virulence response of bacteria. Blocking these signals and inhibiting the communication established between bacteria, is a strategy that needs to be further explored and taken into consideration to prevent pathogens' virulence".

###

This study was conducted in the IGC and funded by Fundacao para a Ciencia e a Tecnologia, and the Howard Hughes Medical Institute.

*Valente RS, Nadal-Jimenez P, Carvalho AFP, Vieira FJD, Xavier KB. 2017. Signal integration in quorum sensing enables cross-species induction of virulence in Pectobacterium wasabiae. mBio 8:e00398-17. https://doi.org/10.1128/mBio.00398-17

Media Contact

Ana Mena
[email protected]
351-214-407-959
@IGCiencia

http://www.igc.gulbenkian.pt

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

Leibniz-HKI Honored Again for Its Commitment to Equal Opportunity in Personnel Management

November 5, 2025
blank

Bee Genome Study Uncovers Transposable Element Evolution

November 5, 2025

Single-Particle Genomics Reveals Abundant Unusual Marine Viruses

November 5, 2025

Revolutionary Brain Implants Offer Therapy Without Surgery

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why Sandboxes Matter in Implantable Neurotechnology

Patent Ductus Arteriosus: Impact on Newborn Kidney Health

Legal vs Illegal Cannabis Sources in Germany Explained

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.