• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neurons can learn temporal patterns

Bioengineer by Bioengineer
May 29, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals. This is what emerges from a study at Lund University in Sweden.

"It is like striking a piano key with a finger not just once, but as a programmed series of several keystrokes", says neurophysiology researcher Germund Hesslow.

The work constitutes basic research, but has a bearing on the development of neural networks and artificial intelligence as well as research on learning. Autism, ADHD and language disorders in children, for example, may be associated with disruptions in these and other basic learning mechanisms.

Learning is commonly thought to be based on strengthening or weakening of the contacts between the brain's neurons. The Lund researchers have previously shown that a cell can also learn a timed association, so that it sends a signal with a certain learned delay. Now, it seems that a neuron can be trained not only to give a single response, but a whole complex series of several responses.

The brain's learning capacity is greater than previously thought

"This means that the brain's capacity for learning is even greater than previously thought!" says Germund Hesslow's colleague Dan-Anders Jirenhed. He thinks that, in the future, artificial neural networks with "trained neurons" could be capable of managing more complex tasks in a more efficient way.

The Lund researchers' study focuses on the neurons' capacity for associative learning and temporal learning. In the experiments, the cells learned during several hours of training to associate two different signals. If the delay between the signals was a quarter of a second, the cells learned to respond after a quarter of a second. If the interval was half a second, the cells responded after half a second, and so on.

The researchers now show that the cells can learn not only one, but several reactions in a series. "Signal – brief pause – signal – long pause – signal" gives rise to a series of responses with exactly the same intervals of time: "response – brief pause – response – long pause – response".

The cells studied by the researchers are called Purkinje cells and are located in the cerebellum. The cerebellum is the part of the brain that controls bodily position, balance and movement. It also plays an important role in learning long series of complicated movements which require precise timing, such as the movements of the hands and fingers when playing the piano.

###

Media Contact

Germund Hesslow
[email protected]
46-703-481-219
@lunduniversity

http://www.lu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.