• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Self-healing catalyst films for hydrogen production

Bioengineer by Bioengineer
May 26, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemists at the Centre for Electrochemical Sciences at Ruhr-Universität Bochum have developed a catalyst with self-healing properties. Under the challenging conditions of water electrolysis for hydrogen production, the catalyst material regenerates itself, as long as the components required for this are present in the electrolyte solution. A team involving Stefan Barwe, Prof Dr Wolfgang Schuhmann and Dr Edgar Ventosa from the Bochum Chair of Analytical Chemistry reports on this in the journal Angewandte Chemie International Edition. The work took place as part of the cluster of excellence Resolv.

Hydrogen is considered an energy source of the future. However, finding stable and efficient catalysts to synthesise it is a challenge. This synthesis takes place using water electrolysis, with hydrogen created at one electrode and oxygen at the other. The electrodes are covered with a catalyst film, which is attacked during the reaction and becomes less effective.

Catalyst surface forms by itself

In a feasibility study, the Bochum chemists demonstrated a new way of creating a highly stable catalyst film. They added catalyst nanoparticles in the form of a powder to the solution, which surrounds the electrodes. The particles pumped through the electrode chambers collide with the electrode surface; there, a particle film forms based on electrostatic attraction forces. Particles with a positively charged surface are deposited on the anode and particles with a negatively charged surface on the cathode. The catalyst film thus forms by itself.

Via the same mechanism, the catalyst surface regenerated during the reaction. New nanoparticles from the solution moved to the electrodes, where they freshened up the worn catalyst film. This self-healing effect lasted as long as catalyst particles were present in the solution.

Stable for several days

The researchers worked with nickel electrodes. They tested two different catalyst powders for the two electrodes, one a nickel-based material and one a cobalt-based material. All of the catalyst materials formed a film a few micrometres thick on the electrodes, as electron-microscopic captures confirmed. The measurements also showed that functional systems formed that produced hydrogen in a stable manner over several days.

In further studies, the chemists now want to investigate more closely the influence of particle shape and size as well as the influence of the electrolyte solution on the efficiency and stability of the catalysts.

###

Media Contact

Wolfgang Schuhmann
[email protected]
49-234-322-6200
@ruhrunibochum

http://www.ruhr-uni-bochum.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.