• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cellular stress in the brain may contribute to non-alcoholic fatty liver disease

Bioengineer by Bioengineer
May 25, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON (May 25, 2017) — Disruptions in a protein folding process occurring in the brain, known as endoplasmic reticulum (ER) stress, may cause non-alcoholic fatty liver disease, independent of other factors. A research team at the George Washington University (GW) published their results in the Journal of Clinical Investigation Insight.

"Nearly 75 percent of obese adults experience non-alcoholic fatty liver disease. However, its underlying causes are unclear," said Colin Young, Ph.D., senior author and assistant professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "Recent findings have pointed to ER stress as central to its development. What our research shows is that ER stress in the brain is a key contributor."

As the primary site of cellular protein folding, the ER plays a critical role in maintaining cellular function. When there is nutritional excess, the protein load exceeds the ER folding capacity and a collection of conserved signaling pathways, termed the unfolded protein response (UPR), are activated to preserve ER function. While beneficial in the short-term, chronic UPR activation, known as ER stress, is a major pathological mechanism in metabolic disease, such as obesity.

Young's research team demonstrated that UPR activation in the brain, specifically in the forebrain, is causally linked to non-alcoholic fatty liver disease. Also known as hepatic steatosis, the research shows that brain ER stress can cause the disease independent of changes in body weight, food intake, and other factors.

Non-alcoholic fatty liver disease impairs normal liver function and is linked to other diseases such as diabetes and cardiovascular disease. The next step is to determine how and why ER stress occurs in the brain and how it causes fat build up in the liver.

"Further research may give us another possible avenue for targeting fatty liver disease," said Young. "The field has been focused on how we can improve the liver, for example, by developing drugs that target the liver. Our research suggests that we may also need to think about targeting the brain to treat non-alcoholic fatty liver disease."

###

The study, "Obesity-induced Hepatic Steatosis is Mediated by Endoplasmic Reticulum Stress in the Subfornical Organ of the Brain," published by the Journal of Clinical Investigation can be found at http://insight.jci.org/articles/view/90170.

Media: To interview Dr. Young, please contact Ashley Rizzardo at [email protected] or 202-994-8679.

About the GW School of Medicine and Health Sciences:

Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

Media Contact

Ashley Rizzardo
[email protected]
202-994-8679
@GWtweets

http://www.gwu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.