• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists develop new concept of confined catalysis under 2-D materials

Bioengineer by Bioengineer
May 24, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research group led by Profs. FU Qiang and BAO Xinhe from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences revealed both the geometric constraint and confinement field in two-dimensional (2D) space between a graphene overlayer and Pt(111). The researchers demonstrated a new concept of confined catalysis under 2D materials, which they have named "catalysis under cover."

These findings were published in the latest issue of PNAS, in an article entitled "Confined catalysis under two-dimensional materials."

Small spaces in nanoreactors may have big implications for chemistry. The chemical nature of molecules and reactions within nanospaces can be changed significantly due to the nanoconfinement effect. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. 2D nanoreactors formed under 2D materials can provide a well-defined model for exploring confined catalysis.

The scientists chose a graphene/Pt (111) surface as a model for studying confined catalysis using density functional theory (DFT) calculations. They showed that the adsorption of atoms and molecules on the Pt(111) surface is weakened under graphene. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. Both the geometric constraint and confinement field imposed by the 2D cover are attributed to the observed confinement phenomena.

The general tendency for weakened surface adsorption under the confinement of a graphene overlayer enables feasible modulation of surface reactions by placement of a 2D cover. The concept "catalysis under cover" can be applied to reactions between two opposite 2D walls interacting with each other through van der Waals forces. The concept helps in the design of high-performance nanocatalysts interfacing with 2D material overlayers.

The research group demonstrated the confinement-induced modulation of surface reactivity in a Pt-catalyzed oxygen reduction reaction (ORR) under 2D covers. It is known that oxygen binding to Pt is relatively strong and all means of weakening this binding can be used to promote the reaction. When placing different 2D materials such as graphene and h-BN on the surface, oxygen binding with Pt weakens, thus effectively enhancing ORR activity.

Confined catalysis under 2D materials can be applied to supported nanocatalysts. Metal nanoparticles may be encapsulated by 2D materials, thus forming core-shell nanostructures. The active core structures are well protected by the outer shells and catalyst stability is improved. Furthermore, catalyst activity can be enhanced by the confinement of the outer shells.

###

This study was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, and the Collaborative Innovation Center of Chemistry for Energy Materials.

Media Contact

LU Xinyi
[email protected]
86-411-843-79201

http://english.cas.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.