• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rewrite Four camera-type eyes in the earliest vertebrates from the Cambrian Period as a headline for a science magazine post, using no more than 7 words

Bioengineer by Bioengineer
January 21, 2026
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Vertebrate vision is mainly accommodated by a pair of lateral image-forming camera-type eyes and is supplemented in non-mammalian vertebrates by a dorsal pineal complex (pineal and parapineal organs) functioning as photoreceptive and/or endocrine organs1. The pineal complex shares a common genetic and embryological basis with the lateral eyes, both derived from evaginations during the development of diencephalon2. Despite being widely heralded as the ‘third eye’ in crown vertebrates3, the nature of the pineal complex and its presumed visual capability in early vertebrates2 remain unknown. Here we describe two pigmented features situated between the lateral eyes in two species of myllokunmingids, the earliest known fossil vertebrates (approximately 518 million years ago), and interpret these as pineal/parapineal organs. In both myllokunmingid species, the pineal complex contains abundant melanin-containing melanosomes identical to those in the retinal pigment epithelium in the lateral eyes, together with a distinctive, regularly ovoid structure interpreted as a lens. Our results indicate that the lateral eyes and pineal complex in myllokunmingids probably functioned as camera-type eyes capable of image formation. Thus, we propose that the four camera-type eyes represent an ancestral vertebrate character, corroborating hypotheses about the deep homology between the eyes and pineal complex.

Lei, X., Zhang, S., Cong, P. et al. Four camera-type eyes in the earliest vertebrates from the Cambrian Period.
Nature (2026). https://doi.org/10.1038/s41586-025-09966-0

https://doi.org/10.1038/s41586-025-09966-0 bu içeriği en az 2000 kelime olacak şekilde ve alt başlıklar ve madde içermiyecek şekilde ünlü bir science magazine için İngilizce olarak yeniden yaz. Teknik açıklamalar içersin ve viral olacak şekilde İngilizce yaz. Haber dışında başka bir şey içermesin. Haber içerisinde en az 12 paragraf ve her bir paragrafta da en az 50 kelime olsun. Cevapta sadece haber olsun. Ayrıca haberi yazdıktan sonra içerikten yararlanarak aşağıdaki başlıkların bilgisi var ise haberin altında doldur. Eğer bilgi yoksa ilgili kısmı yazma.:

Subject of Research:

Article Title:

Article References:

Lei, X., Zhang, S., Cong, P. et al. Four camera-type eyes in the earliest vertebrates from the Cambrian Period.
Nature (2026). https://doi.org/10.1038/s41586-025-09966-0

Image Credits: AI Generated

DOI: https://doi.org/10.1038/s41586-025-09966-0

Keywords

Tags: ancestral vertebrate characteristicsCambrian period fossilscamera-type eyes evolutiondeep homology of eyesearly vertebrate visionevolutionary biology of eyesgenetic basis of visionlateral eyes and pineal complexmelanin in eye evolutionmyllokunmingids anatomyphotoreceptive organs in vertebratesvertebrate eye development

Tags: Ancestral vertebrate eyes**Based on the provided contentFossil eye evolutionFour-eyed fossilshere are 5 appropriate tags: **Cambrian vertebratesPineal eye function
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.