• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study unravels the genetics of childhood ‘overgrowth’

Bioengineer by Bioengineer
May 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have undertaken the world's largest genetic study of childhood overgrowth syndromes – providing new insights into their causes, and new recommendations for genetic testing.

Overgrowth syndromes describe conditions that cause children to be taller and to have a bigger head size than expected for their age, and also to have an intellectual disability or other medical problems.

Scientists at The Institute of Cancer Research, London, found many of the children with overgrowth syndromes had mutations in one of 14 different genes.

They also showed that many of the overgrowth genes are also involved in driving cancer growth, though intriguingly, the types of mutations involved in promoting human growth and cancer growth are often different.

The researchers collected samples and information from 710 children with an overgrowth syndrome through an international study, funded by Wellcome.

They used a technique called exome sequencing to analyse the DNA of all the genes in each child and discovered a genetic cause for their overgrowth syndrome in 50 per cent of the children.

These children had genetic mutations in one of the 14 genes, and usually the mutation started in the child with the overgrowth syndrome and was not inherited from either parent.

Amongst the 14 genes was HIST1H1E, which has not been previously linked to a human disorder. The other genes have been linked with human disorders before, but their contribution to overgrowth syndromes was not known.

Importantly, the study showed that the major genes causing overgrowth syndromes are involved in epigenetic regulation, which means they control how and when other genes will be switched on and off.

Mutations in epigenetic regulation genes were the cause of overgrowth in 44 per cent of the children in the study, which is published today (Thursday) in the American Journal of Human Genetics.

Study leader, Professor Nazneen Rahman, Head of Genetics at The Institute of Cancer Research, London, and The Royal Marsden Hospital NHS Foundation Trust, said:

"The control of growth is a fundamental process important in development and many diseases, including cancer. We are pleased our work has provided both new insights into the mechanisms that control growth and new strategies by which genetic testing can be used efficiently to diagnose children with overgrowth syndromes."

Co-study lead Dr Katrina Tatton-Brown, Reader in Clinical Genetics at St George's, University of London, Consultant Geneticist at The Institute of Cancer Research, London, and the South West Thames Regional Genetics Service, St Georges University Hospitals NHS Foundation Trust, said:

"Our study suggests that offering an exome sequencing genetic test to children with overgrowth and intellectual disability would be a practical and worthwhile way to try to identify the cause of their problems. This would allow us to provide children with more personalised management and to give better information to families about risks to other members of the family."

###

Media Contact

Ben Kolb
[email protected]
020-715-35359
@ICR_London

http://www.icr.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Understanding Occupational Therapy’s Role in Delirium Care

August 29, 2025

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

August 29, 2025

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Occupational Therapy’s Role in Delirium Care

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.