• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers develop new capabilities for genome-wide engineering of yeast

Bioengineer by Bioengineer
May 4, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kathryn Faith

One of humankind's oldest industrial partners is yeast, a familiar microbe that enabled early societies to brew beer and leaven bread and empowers modern ones to synthesize biofuels and conduct key biomedical research. Yeast remains a vital biological agent, yet our ability to explore and influence its genomic activity has lagged.

In a new article in Nature Communications, University of Illinois researchers describe how their successful integration of several cutting-edge technologies–creation of standardized genetic components, implementation of customizable genome editing tools, and large-scale automation of molecular biology laboratory tasks–will enhance our ability to work with yeast. The results of their new method demonstrate its potential to produce valuable novel strains of yeast for industrial use, as well as to reveal a more sophisticated understanding of the yeast genome.

"The goal of the work was really to develop a genome-scale engineering tool for yeast . . . traditional metabolic engineering focused on just a few genes and the few existing genome-scale engineering tools are only applicable to bacteria, not eukaryotic organisms like yeast," said Steven L. Miller Chair of Chemical and Biomolecular Engineering Huimin Zhao, who led the study. "A second innovation is the use of synthetic biology concepts, the modularization of the parts, and integration with a robotic system, so we can do it in high-throughput."

The team focused on yeast in part because of its important modern-day applications; yeasts are used to convert the sugars of biomass feedstocks into biofuels such as ethanol and industrial chemicals such as lactic acid, or to break down organic pollutants. Because yeast and other fungi, like humans, are eukaryotes, organisms with a compartmentalized cellular structure and complex mechanisms for control of their gene activity, study of yeast genome function is also a key component of biomedical research.

"In basic science, a lot of fundamental eukaryotic biology is studied in yeast," said Tong Si, a Carl R. Woese Institute for Genomic Biology Research Fellow. "People have a limited understanding of these complicated systems. Although there are approximately 6,000 genes in yeast, people probably know less than 1,000 by their functions; all the others, people do not know."

The group took the first step toward their goal of a novel engineering strategy for yeast by creating what is known as a cDNA library: a collection of over 90% of the genes from the genome of baker's yeast (Saccharomyces cerevisiae), arranged within a custom segment of DNA so that each gene will be, in one version, overactive within a yeast cell, and in a second version, reduced in activity.

Zhao and colleagues examined the ability of the CRISPR-Cas system, a set of molecules borrowed from a form of immune system in bacteria (CRISPR stands for clustered regularly interspaced short palindromic repeats, describing a feature of this system in bacterial genomes). This system allowed Zhao to make precise cuts in the yeast genome, into which the standardized genetic parts from their library could insert themselves.

"The first time we did this, in 2013, there was no CRISPR . . . the best we could get was 1% of the cells modified in one run," said Si. "We struggled a little on that, and when CRISPR came out, that worked. We got it to 70% [cells modified], so that was very important."

With gene activity-modulating parts integrating into the genome with such high efficiency, the researchers were able to randomly generate many different strains of yeast, each with its own unique set of modifications. These strains were subjected to artificial selection processes to identify those that had desirable traits, such as the ability to survive exposure to reagents used in the biofuel production process.

This selection process was greatly aided by the Illinois Biological Foundry for Advanced Biomanufacturing (iBioFAB), a robotic system that performs most of the laboratory work described above in an automated way, including selection of promising yeast strains. Use of iBioFAB greatly accelerated the work, enabling simultaneous creation and testing of many unique strains. The iBioFAB was conceived and developed by the Biosystems Design research theme at the Carl R. Woese Institute for Genomic Biology (IGB), which is led by Zhao.

With support from the High Performance Biological Computing Group at Illinois, Zhao, Si and their colleagues analyzed the modified genomes of their most promising yeast strains. They identified combinations of genes whose altered activities contributed to desirable traits; the functions of some of these genes were previously unknown, demonstrating the technique's ability to generate new biological knowledge.

"I think the key difference between this method and the other existing metabolic engineering strategies in yeast is really the scale," said Zhao. "The current metabolic engineering strategies are all focused on just a few genes, dozens of genes at most . . . it's very intuitive. With this we can explore all the genes, we can identify a lot of targets that cannot be intuited."

###

The work, which was funded by the Roy J. Carver Charitable Trust, IGB, Defense Advanced Research Program Agency, and National Academies Keck Futures Initiative on Synthetic Biology, paves the way for similar approaches to broad-scale, automated genome engineering of other eukaryotic species.

Media Contact

Nicholas Vasi
[email protected]
@IGBIllinois

http://www.igb.uiuc.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.