• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Deep-diving technology finds little filter feeder has giant carbon cycling impact

Bioengineer by Bioengineer
May 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: © 2017 MBARI

Deep-diving Technology Finds Little Filter Feeder Has Giant Carbon Cycling Impact: Using a novel deep-sea technology, scientists have measured for the first time how a species of zooplankton called giant larvaceans contributes to the transfer of atmospheric carbon to the deep ocean. Data from the instrument DeepPIV revealed that giant larvaceans filter carbon particles at higher rates than any other zooplankton filter feeder. The technology may also be used for more accurate measurements of carbon removal by other deep-water organisms, an essential parameter for modeling oceanic ecosystems. Giant larvaceans, which are approximately pinky finger-sized plankton, live in the upper 400 meters of the ocean and build filtering "houses" so fragile that they cannot be analyzed in a lab. As giant larvaceans beat their tails, they propel particles from the water into these mucus houses for digestion. What's more, when the larvaceans discard their old, nutrient-rich houses, these structures sink to the sea floor, a significant contribution to moving organic materials into deeper water. Until now, scientists have only been able to estimate giant larvacean filtration rates based off the rates of other zooplankton. To measure their contribution more directly, Kakani Katija and colleagues launched DeepPIV, which deployed from a remotely operated vehicle and visualized fluid motion, in Monterey Bay, California. Katija et al. observed giant larvaceans and other zooplankton in the genus Bathochordaeus and collected 24 flow measurements. They found that one blue-tailed species of giant larvaceans had a filtration rate higher than the previously reported record-holding plankton, salps. By combining filtration rates with data on larvacean abundance, Katija et al. calculated the zooplankton could filter their 200 meter principal depth range in Monterey Bay in 13 days. As a next step, the scientists hope to compare the filtering rates at this site to areas around the world that are home to giant larvaceans.

###

Media Contact

Kim Fulton-Bennett
[email protected]
831-775-1835
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Menopause Care: Insights from Workforce Review and Consultation

February 7, 2026

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

February 7, 2026

3D Gut-Brain-Vascular Model Reveals Disease Links

February 7, 2026

Low-Inflammation in Elderly UTIs: Risks and Resistance

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.